

Propafenone Hydrochloride Extended-Release Capsules

Type of PostingRevision BulletinPosting Date06-Aug-2020Official Date07-Aug-2020

Expert Committee Chemical Medicines Monographs 2

Reason for Revision Compliance

In accordance with the Rules and Procedures of the 2015–2020 Council of Experts, the Chemical Medicines Monographs 2 Expert Committee has revised the Propafenone Hydrochloride Extended-Release Capsules monograph. The purpose for the revision is to add *Dissolution Test 5* to accommodate FDA-approved drug products.

The Propafenone Hydrochloride Extended-Release Capsules Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Sujatha Ramakrishna, Principal Scientific Liaison (301-816-8349 or SXR@usp.org).

Propafenone Hydrochloride Extended-Release Capsules

DEFINITION

Propafenone Hydrochloride Extended-Release Capsules contain NLT 90.0% and NMT 110.0% of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$).

IDENTIFICATION

- A. Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197K
- **B.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY

PROCEDURE

Buffer: Dissolve 1.36 g/L of monobasic potassium phosphate in water, and adjust with phosphoric acid to a pH of 3.0 ± 0.1 .

Mobile phase: Methanol and Buffer (50:50)

Diluent: 50% methanol in water

Standard solution: 0.1 mg/mL of <u>USP Propafenone Hydrochloride RS</u> in *Diluent*

Sample stock solution: Nominally 1 mg/mL of propafenone hydrochloride prepared as follows. Transfer a suitable amount of finely powdered contents from NLT 20 Capsules to an appropriate volumetric flask. Add about 60% of the final volume of *Diluent*, and sonicate with occasional swirling until the contents are completely disintegrated. Dilute with *Diluent* to volume and pass through a suitable filter of 0.45-µm pore size.

Sample solution: Nominally 0.1 mg/mL of propafenone hydrochloride in *Diluent* from the *Sample stock* solution

Chromatographic system

(See <u>Chromatography (621), System Suitability</u>.)

Mode: LC

Detector: UV 250 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing L7

Flow rate: 1 mL/min
Injection volume: 20 µL

Run time: NLT 2 times the retention time of propafenone

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of propagenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) in the portion of Capsules taken:

Result =
$$(r_{IJ}/r_S) \times (C_S/C_{IJ}) \times 100$$

 r_{II} = peak response of propafenone from the Sample solution

= peak response of propafenone from the Standard solution

 r_{S}

 C_S = concentration of <u>USP Propagenone Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 C_{II} = nominal concentration of propagenone hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

Change to read:

• **Dissolution** (711)

Test 1

Acid stage

Medium: 0.08 N hydrochloric acid; 900 mL

Apparatus 2: 50 rpm

Time: 1 h

Diluent: 6.8 g/L of monobasic potassium phosphate in water. Adjust with sodium hydroxide to a pH of

6.8.

Standard solution: (L/1000) mg/mL of <u>USP Propafenone Hydrochloride RS</u> in *Diluent*, where L is the

label claim in mg/Capsule

Sample solution: At the specified time point, withdraw about 10 mL of the solution and pass through a suitable filter of 0.45-µm pore size. Discard at least the first 4 mL of the filtrate. Analyze the *Sample solution* immediately.

Instrumental conditions

Mode: UV

Analytical wavelengths: 305 and 375 nm

Cell: 0.2 cm
Blank: Medium

Analysis

Samples: Standard solution and Sample solution

Measure and subtract the absorbance at 375 nm from the absorbance at 305 nm to obtain the absorbances for the *Sample solution* and *Standard solution*.

Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved:

Result₁ =
$$(A_U/A_S) \times (C_S/L) \times V \times 100$$

 A_{IJ} = absorbance of the Sample solution

 A_S = absorbance of the Standard solution

 C_S = concentration of <u>USP Propafenone Hydrochloride RS</u> in the *Standard solution* (mg/mL)

L = label claim (mg/Capsule)

V = volume of Medium, 900 mL

Tolerances: See Table 1.

Buffer stage

Proceed as directed in the *Acid stage*, except for the following parameters.

Buffer: Dissolve 108.88 g of monobasic potassium phosphate in water, add 14.4 g of sodium hydroxide, mix to dissolve, and dilute with water to 1 L. Adjust with 2 N sodium hydroxide to a pH of 6.8.

Solution A: Buffer and 2 N sodium hydroxide (64:36)

Medium: At 2 h of dissolution time, add 100 mL of *Solution A*, preheated at 37°, to 900 mL of 0.08 N

<u>hydrochloric acid</u>. **Times:** 4 and 12 h

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of propagenone hydrochloride $(C_{21}H_{27}NO_3 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

Result_i =
$$(A_{II}/A_S) \times C_S$$

 A_{II} = absorbance of the Sample solution

 A_S = absorbance of the Standard solution

 C_S = concentration of the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved at each time point (i):

$$Result_2 = C_2 \times V \times (1/L) \times 100$$

Result₃ = {
$$[C_3 \times (V - V_S)] + (C_2 \times V_S)$$
} × (1/L) × 100

 C_i = concentration of propagenone hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL)

V = volume of Medium, 1000 mL

L = label claim (mg/Capsule)

 V_S = volume of *Medium* taken (mL)

Tolerances: See <u>Table 1</u>.

Table 1

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	5–25
2	4	40-70
3	12	NLT 75

The percentages of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 2: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 2*.

Acid stage

Acid stage medium: 0.08 N hydrochloric acid; 900 mL

Apparatus 2: 50 rpm, with sinkers

Time: 1 h

Standard stock solution: 0.42 mg/mL of <u>USP Propafenone Hydrochloride RS</u> prepared as follows. Transfer a suitable amount of <u>USP Propafenone Hydrochloride RS</u> to a suitable volumetric flask. Add <u>methanol</u>, NMT 10% of the final volume, and sonicate to dissolve. Dilute with *Acid stage medium* to volume.

Standard solution: 0.021 mg/mL of <u>USP Propafenone Hydrochloride RS</u> in *Acid stage medium* from the *Standard stock solution*

Sample solution: Pass the solution through a suitable filter of 0.45-µm pore size. Dilute with *Acid stage medium* to a concentration similar to that of the *Standard solution*.

Instrumental conditions

Mode: UV

Analytical wavelength: 305 nm

Cell: 1 cm

Blank: Acid stage medium

Analysis

After 1 h in the *Acid stage medium* and the collection of the *Sample solution*, replace the portion of solution withdrawn with an equal volume of *Acid stage medium*. Continue for an additional 1 h in *Acid stage medium*.

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of propagenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved:

$$Result_1 = (A_U/A_S) \times C_S \times D \times V \times (1/L) \times 100$$

 A_{II} = absorbance of the Sample solution

 A_S = absorbance of the Standard solution

 C_S = concentration of <u>USP Propafenone Hydrochloride RS</u> in the *Standard solution* (mg/mL)

D = dilution factor (mL/mL)

V = volume of Acid stage medium, 900 mL

L = label claim (mg/Capsule)

Tolerances: See <u>Table 2</u>.

Buffer stage

Proceed as directed in the Acid stage, except for the following parameters.

Buffer stage medium: After 2 h in the *Acid stage*, add 100 mL of phosphate buffer (68 g of monobasic potassium phosphate and 42 g of sodium hydroxide in 1000 mL of water), preheated at 37°, to 900 mL of *Acid stage medium*; 1000 mL.

Times: 6 and 15 h

Standard stock solution: 0.48 mg/mL of <u>USP Propafenone Hydrochloride RS</u> prepared as follows. Transfer a suitable amount of <u>USP Propafenone Hydrochloride RS</u> to a suitable volumetric flask. Add <u>methanol</u>, NMT 10% of the final volume, and sonicate to dissolve. Dilute with *Buffer stage medium* to volume.

Standard solution: 0.048 mg/mL of <u>USP Propafenone Hydrochloride RS</u> in *Buffer stage medium* from *Standard stock solution*

Sample solution: Withdraw a 10-mL aliquot at each time point. Pass the solution through a suitable filter of 0.45-µm pore size. Dilute with *Buffer stage medium* to a concentration similar to that of the *Standard solution*.

Blank: Buffer stage medium

Instrumental conditions: See *Acid stage*.

Analysis

At the specified time points, replace the portion of solution withdrawn with 10 mL of *Buffer stage medium*.

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of propagenone hydrochloride $(C_{21}H_{27}NO_3 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

Result_i =
$$(A_{IJ}/A_S) \times C_S \times D$$

 A_{II} = absorbance of the Sample solution

 A_S = absorbance of the Standard solution

 C_S = concentration of <u>USP Propafenone Hydrochloride RS</u> in the *Standard solution* (mg/mL)

D = dilution factor (mL/mL)

Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved at each time point (i):

$$Result_2 = \{ [C_2 \times V] + (C_1 \times V_S) \} \times (1/L) \times 100$$

Result₃ = {
$$[C_3 \times V] + [(C_2 + C_1) \times V_S]$$
} × (1/L) × 100

 C_i = concentration of propagenone hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL)

V = volume of Buffer stage medium, 1000 mL

 V_S = volume of the Sample solution withdrawn from the Buffer stage medium (mL)

L = label claim (mg/Capsule)

Tolerances: See <u>Table 2</u>.

Table 2

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	5–25
2	6	45-65
3	15	NLT 80

The percentages of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 3: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 3*.

Acid stage

Acid stage medium: 0.08 N hydrochloric acid; 900 mL

Apparatus 2: 50 rpm, with sinkers

Time: 2 h

Phosphate buffer: Dissolve 190.06 g of <u>tribasic sodium phosphate</u> in 1 L of <u>water</u>.

Diluent: *Phosphate buffer* and *Acid stage medium* (12:88). Adjust the pH to 6.8 with <u>phosphoric acid</u> or <u>sodium hydroxide</u> if necessary.

Standard solution: (L/1000) mg/mL of <u>USP Propafenone Hydrochloride RS</u>, where L is the label claim in mg/Capsule, prepared as follows. Transfer a suitable amount of <u>USP Propafenone Hydrochloride RS</u> to a suitable volumetric flask. Dissolve with 10% of final volume of <u>methanol</u> with aid of sonication. Dilute with *Diluent* to volume.

Sample solution: At the specified time point, withdraw 10 mL of the solution under test and centrifuge. Use the supernatant.

Instrumental conditions

Mode: UV

Analytical wavelengths: 305 nm

Cell: 0.2 cm Blank: Diluent

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved:

Result₁ =
$$(A_U/A_S) \times (C_S/L) \times V \times 100$$

 A_{II} = absorbance of the Sample solution

 A_S = absorbance of the *Standard solution*

 C_S = concentration of <u>USP Propafenone Hydrochloride RS</u> in the *Standard solution* (mg/mL)

L = label claim (mg/Capsule)

V = volume of Acid stage medium, 900 mL

Tolerances: See Table 3.

Buffer stage

Proceed as directed in the Acid stage, except for the following parameters.

Buffer stage medium: After the samples are withdrawn at 2 h, add 110 mL or appropriate amount of *Phosphate buffer*, preheated at 37°, to *Acid stage medium*, and adjust the pH to 6.8 with <u>phosphoric acid</u> or <u>sodium hydroxide</u> if necessary; 1000 mL.

Times: 4 and 12 h

Sample solution: At the specified time points, withdraw 10 mL of the solution and centrifuge. Use the supernatant.

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of propagenone hydrochloride $(C_{21}H_{27}NO_3 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

$$Result_i = (A_U/A_S) \times C_S$$

 A_{II} = absorbance of the Sample solution

 A_{ς} = absorbance of the *Standard solution*

 C_S = concentration of the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of propagenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved at each time point (i):

Result₂ = {
$$[C_2 \times (V - V_S)] + [C_1 \times V_S]$$
} × (1/L) × 100

Result₃ =
$$({C_3 \times [V - (2 \times V_S)]}) + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100$$

 C_i = concentration of propagenone hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL)

V = volume of Buffer stage medium, 1000 mL

 V_S = volume of Sample solution withdrawn (mL)

L = label claim (mg/Capsule)

Tolerances: See <u>Table 3</u>.

Table 3

Time Point (i)	Time (h)	Amount Dissolved (%)
1	2	NMT 30
2	4	35-60
3	12	NLT 80

The percentages of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 4: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 4*.

Acid stage

Acid stage medium: 0.08 N hydrochloric acid; 900 mL

Apparatus 2: 50 rpm

Time: 2 h

Diluent: Dissolve 6.8 g of <u>monobasic potassium phosphate</u> with 1 L of <u>water</u>. Adjust with <u>sodium hydroxide</u> to a pH of 6.8.

Standard solution: 0.325 mg/mL of USP Propafenone Hydrochloride RS in Diluent

[Note—Sonication may be needed for dissolution.]

Sample solution: At the specified time point, withdraw 5 mL of the solution and pass through a suitable filter. Replace the portion of solution withdrawn with an equal volume of *Medium*.

Instrumental conditions

Mode: UV

Analytical wavelengths: 305 and 375 nm

Cell: 0.2 cm **Blank:** *Diluent*

Analysis

Samples: Standard solution and Sample solution

Measure and subtract the absorbance at 375 nm from the absorbance at 305 nm to obtain the absorbances for the *Sample solution* and *Standard solution*.

Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved:

$$Result_1 = (A_U/A_S) \times (C_S/L) \times V \times 100$$

 A_{II} = absorbance of the Sample solution

 A_S = absorbance of the *Standard solution*

 C_S = concentration of <u>USP Propafenone Hydrochloride RS</u> in the *Standard solution* (mg/mL)

L = label claim (mg/Capsule)

V = volume of Medium, 900 mL

Tolerances: See Table 4.

Buffer stage

Proceed as directed in the *Acid stage*, except for the following parameters.

Buffer: Dissolve 108.88 g of monobasic potassium phosphate and 14.4 g of sodium hydroxide with 1 L of water. Adjust with 2 N sodium hydroxide to a pH of 6.8.

Solution A: Buffer and 2 N sodium hydroxide (64:36)

Medium: At 2 h of dissolution time, add 100 mL of *Solution A*, preheated at 37°, to the vessel containing 900 mL of 0.08 N <u>hydrochloric acid</u>.

Times: 3, 6, and 12 h

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of propagenone hydrochloride $(C_{21}H_{27}NO_3 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

$$Result_i = (A_U/A_S) \times C_S$$

 A_{II} = absorbance of the Sample solution

 A_S = absorbance of the *Standard solution*

 C_S = concentration of the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of propagenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved at each time point (i):

$$Result_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\mathsf{Result}_3 = \{ [C_3 \times V] + [(C_2 + C_1) \times V_S] \} \times (1/L) \times 100$$

$$\mathsf{Result}_4 = \{ [C_4 \times V] + [(C_3 + C_2 + C_1) \times V_S] \} \times (1/L) \times 100$$

 C_i = concentration of propagenone hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL)

V = volume of Medium, 1000 mL

 V_S = volume of *Medium* taken, 5 mL

L = label claim (mg/Capsule)

Tolerances: See <u>Table 4</u>.

Table 4

Time Point (i)	Time (h)	Amount Dissolved (%)
1	2	15-35
2	3	26-46
3	6	56-76
4	12	NLT 80

The percentages of the labeled amount of propagenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

▲ **Test 5:** If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 5.*

Acid stage

Acid stage medium: 0.08 N hydrochloric acid; 900 mL

Apparatus 2: 50 rpm

Time: 2 h

Diluent: Dissolve 6.8 g of monobasic potassium phosphate with 900 mL of water in a 1-L volumetric flask. Adjust with 2 N sodium hydroxide to a pH of 6.8, and dilute with water to volume.

Standard solution: L/1000 mg/mL of <u>USP Propafenone Hydrochloride RS</u> in *Diluent*, where L is the label claim. Sonication may be needed for complete dissolution.

Sample solution: At the specified time point, withdraw 10 mL of the solution under test and pass through a suitable filter. Replace the portion of solution withdrawn with an equal volume of *Acid stage medium*.

Instrumental conditions

Mode: UV

Analytical wavelengths: 305 and 375 nm

Cell: 0.2 cm
Blank: Diluent

Analysis

Samples: Standard solution and Sample solution

Measure and subtract the absorbance at 375 nm from the absorbance at 305 nm to obtain the absorbances for the *Sample solution* and *Standard solution*.

Calculate the percentage of the labeled amount of propafenone hydrochloride (C₂₁H₂₇NO₃·HCl) dissolved:

Result₁ =
$$(A_U/A_S) \times (C_S/L) \times V \times 100$$

 A_{II} = absorbance of the Sample solution

 A_S = absorbance of the Standard solution

C_S = concentration of <u>USP Propafenone Hydrochloride RS</u> in the *Standard solution*

(mg/mL)

L = label claim (mg/Capsule)

V = volume of Acid stage medium, 900 mL

Tolerances: See <u>Table 5</u>.

Buffer stage: Proceed as directed in the Acid stage except for the following parameters.

Buffer: Dissolve 108.88 g of monobasic potassium phosphate in 400 mL of water in a 1-L volumetric flask, and add 14.4 g of sodium hydroxide. Dilute with water to volume, and adjust with 2 N sodium hydroxide to a pH of 6.8.

Solution A: Buffer and 2 N sodium hydroxide (64:36)

Buffer stage medium: At 2 h of dissolution time, add 100 mL of *Solution A*, preheated at 37°, to the vessel containing 900 mL of 0.08 N <u>hydrochloric acid</u>.

Times: 4 and 10 h

Analysis

Samples: Standard solution and Sample solution

Measure and subtract the absorbance at 375 nm from the absorbance at 305 nm to obtain the absorbances for the *Sample solution* and *Standard solution*.

Calculate the concentration (C_i) of propagenone hydrochloride $(C_{21}H_{27}NO_3 \cdot HCI)$ in the sample withdrawn from the vessel at each time point (i):

Result_i =
$$(A_U/A_S) \times C_S$$

 A_{II} = absorbance of the Sample solution

A_s = absorbance of the Standard solution

= concentration of the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved at each time point (i):

Result₂ = {
$$[C_2 \times (V - V_S)] + [C_1 \times V_S]$$
} × (1/L) × 100

Result₃ =
$$({C_3 \times [V - (2 \times V_S)]} + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100$$

c_i = concentration of propafenone hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL)

V = volume of *Buffer stage medium*, 1000 mL

 $V_{\rm S}$ = volume of sample withdrawn from vessel, 10 mL

L = label claim (mg/Capsule)

Tolerances: See <u>Table 5</u>.

Table 5

Time Point (i)	Time (h)	Amount Dissolved (%)
1	2	15-35
2	4	39-59

Time Point	Time (h)	Amount Dissolved (%)
3	10	NLT 80

The percentages of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCI$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2.</u> (RB 7-Aug-2020)

• **Uniformity of Dosage Units** (905): Meet the requirements

IMPURITIES

Change to read:

• ORGANIC IMPURITIES

Keep all solutions containing propafenone hydrochloride in amber glassware.

Solution A: 0.015 M <u>dibasic potassium phosphate</u>. Adjust with <u>phosphoric acid</u> to a pH of 2.5 ± 0.2 .

Solution B: <u>Acetonitrile</u>

Mobile phase: See [▲]*Table 6*.

Table 6 (RB 7-Aug-2020)

Time (min)	Solution A (%)	Solution B (%)
0	65	35
8	65	35
20	30	70
30	30	70
31	65	35
36	65	35

Diluent: 50% methanol in water

System suitability solution: 0.1 mg/mL each of <u>USP Propafenone Hydrochloride RS</u> and <u>USP Propafenone</u>
Related Compound B RS in *Diluent*

Standard solution: 2.0 μg/mL of <u>USP Propafenone Hydrochloride RS</u> in *Diluent*. Sonicate if necessary. **Sensitivity solution:** 0.3 μg/mL of <u>USP Propafenone Hydrochloride RS</u> in *Diluent* from the *Standard solution*

Sample solution: Nominally 1 mg/mL of propafenone hydrochloride, prepared as follows. Transfer a suitable amount of finely powdered contents from NLT 20 Capsules to an appropriate volumetric flask. Add about 40% of the final volume of *Diluent* and sonicate for about 15 min. Dilute with *Diluent* to volume and pass through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 15-cm; 5-µm packing L7

Column temperature: 30°

Flow rate: 1 mL/min

Injection volume: 20 µL

System suitability

Samples: System suitability solution, Standard solution, and Sensitivity solution

Suitability requirements

Resolution: NLT 3.0 between propafenone related compound B and propafenone, System suitability

solution

Relative standard deviation: NMT 5.0%, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each individual unspecified degradation product in the portion of Capsules taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

 r_{II} = peak response of each unspecified degradation product from the Sample solution

 r_s = peak response of propagenone from the Standard solution

 C_S = concentration of <u>USP Propafenone Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 C_{ij} = nominal concentration of propagenone hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: See <u>^Table 7.</u> _{▲ (RB 7-Aug-2020)} Disregard any peaks below 0.03% (peak area less than that of the *Sensitivity solution*).

^ Table 7 ▲ (RB 7-Aug-2020)

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Propafenone related		
compound B ^{<u>a</u>,<u>b</u>}	0.81	_
Propafenone	1.00	_
Propafenone glycerol		
analog ^{<u>a</u>,<u>c</u>}	2.53	_
Flavone ^a , <u>d</u>	2.83	_
Propafenone dimer ^a , <u>e</u>	2.88	_
Propafenone chloroglycerol		
analog ^{<u>a</u>,<u>f</u>}	2.91	_
Propafenone glycidyl		_
analog ^{a,g} .	2.96	_
Propafenone phenol ^{a,h}	3.29	_
Propafenone glycerol dimer ^a , <u>i</u>	3.80	_
Any unspecified degradation product	_	0.15

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Total degradation	_	
products	_	0.50

^a Process impurities; do not include in total degradation products.

Change to read:

• CONTENT OF PROPAFENONE RELATED COMPOUND A

Buffer: Dissolve 3.4 g of <u>dibasic potassium phosphate</u> in 1000 mL of <u>water</u>, and adjust with <u>phosphoric acid</u> to a pH of 2.5 ± 0.05 .

Solution A: Methanol and Buffer (45:55); pass through a suitable filter of 0.2-µm pore size.

Solution B: Methanol and Buffer (75:25); pass through a suitable filter of 0.2-µm pore size.

Mobile phase: See [▲]*Table 8*.

Table 8 (RB 7-Aug-2020)

Time (min)	Solution A (%)	Solution B (%)
0	100	0
4.0	100	0
7.0	50	50
10.0	0	100
12.0	0	100
12.5	100	0
15.0	100	0

Diluent: Methanol and water (80:20)

Standard solution: 2.0 µg/mL of <u>USP Propafenone Related Compound A RS</u> in *Diluent*

Sensitivity solution: 0.2 μg/mL of <u>USP Propafenone Related Compound A RS</u> in *Diluent* from the *Standard solution*

Sample solution: Nominally 1 mg/mL of propagenone hydrochloride prepared as follows. Transfer a suitable amount of finely powdered contents from NLT 20 Capsules to an appropriate volumetric flask. Add about 75% of the final volume of *Diluent* and sonicate with intermittent shaking for 20 min. Dilute with *Diluent* to volume and pass through a suitable filter of 0.45-µm pore size. Discard the first 4 mL of the filtrate.

Chromatographic system

b (RS,E)-1-{2-[2-Hydroxy-3-(propylamino)propoxy]phenyl}-3-phenylprop-2-en-1-one.

^c 1-[2-[(2*RS*)-2,3-Dihydroxypropoxy]phenyl]-3-phenylpropan-1-one.

d 2-Phenylchroman-4-one.

e 1,1'-[Propyliminobis(2-hydroxypropane-3,1-diyl)oxy-2,1-phenylene]bis(3-phenylpropan-1-one).

f 1-[2-(3-Chloro-2-hydroxypropoxy)phenyl]-3-phenylpropan-1-one.

^g 1-[2-[[(*RS*)-Oxiranyl]methoxy]phenyl]-3-phenylpropan-1-one.

h 1-(2-Hydroxyphenyl)-3-phenylpropan-1-one.

i 1,1'-(2,2'-(2-Hydroxypropane-1,3-diyl)bis(0xy)bis(2,1-phenylene))bis(3-phenylpropan-1-one).

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 250 nm

Column: 2.1-mm \times 10-cm; 1.7- μ m packing L1

Column temperature: 60° Flow rate: 0.4 mL/min Injection volume: 4 µL

System suitability

Samples: Standard solution and Sensitivity solution

Suitability requirements

Tailing factor: NMT 2.0, Standard solution

Relative standard deviation: NMT 6.0%, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of propafenone related compound A in the portion of Capsules taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

 r_{II} = peak response of propagenone related compound A from the Sample solution

 r_s = peak response of propagenone related compound A from the Standard solution

 C_S = concentration of <u>USP Propagenone Related Compound A RS</u> in the Standard solution (mg/mL)

 C_{II} = nominal concentration of propagenone hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: See [▲]Table 9.

Table 9 (RB 7-Aug-2020)

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Propafenone	1.0	_
Propafenone related		
compound Aª	1.9	0.20

^a $N-\{2-Hydroxy-3-[2-(3-phenylpropanoyl)phenoxy]propyl\}-N-propylformamide.$

ADDITIONAL REQUIREMENTS

- Packaging and Storage: Keep in tight containers and store at controlled room temperature.
- **LABELING:** When more than one test for *Dissolution* is given, the *Labeling* section states the test for *Dissolution* used only if *Test 1* is not used.
- USP REFERENCE STANDARDS (11)

USP Propafenone Hydrochloride RS

USP Propafenone Related Compound A RS

 $N-\{2-Hydroxy-3-[2-(3-phenylpropanoyl)phenoxy]propyl\}-N-propylformamide.$

 $C_{22}H_{27}NO_4$ 369.4

USP Propafenone Related Compound B RS

 $(RS,E)-1-\{2-[2-Hydroxy-3-(propylamino)propoxy]phenyl\}-3-phenylprop-2-en-1-one.$

Page Information:

Not Applicable

DocID:

© 2020 The United States Pharmacopeial Convention All Rights Reserved.