

Oxybutynin Chloride Tablets

Type of PostingRevision BulletinPosting Date26-Mar-2021Official Date1-Apr-2021

Expert Committee Small Molecules 3

In accordance with the Rules and Procedures of the Council of Experts, the Small Molecules 3 Expert Committee has revised the Oxybutynin Chloride Tablets monograph. The purpose for the revision is to add *Dissolution Test 3* to accommodate FDA-approved drug products with different dissolution conditions and/or tolerances than the existing dissolution test(s).

Dissolution Test 3 was validated using the Waters Sunfire C18 brand of L1 column. The typical retention time for oxybutynin is about 4 min.

The Oxybutynin Chloride Tablets Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Behnaz Almasi, Scientific Liaison (301-692-3412 or ba@usp.org).

Oxybutynin Chloride Tablets

DEFINITION

Oxybutynin Chloride Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of $\rm C_{22}H_{31}NO_3\cdot$ HCl.

IDENTIFICATION

• THIN-LAYER CHROMATOGRAPHIC IDENTIFICATION TEST (201)

Sample solution: Add a portion of powdered Tablets, equivalent to about 50 mg of oxybutynin chloride, to 10 mL of chloroform. Mix for two minutes, and centrifuge. Use the supernatant layer.

Developing solvent system: Methanol

Visualization: Iodine vapor

ASSAY

PROCEDURE

Solution A: Methanol, water, and triethylamine (800: 3200: 0.9). Adjust with phosphoric acid to a pH of 3.5 ± 0.05 .

Mobile phase: Acetonitrile and Solution A (1:4)

Standard solution: 0.05 mg/mL of <u>USP Oxybutynin Chloride RS</u> in *Mobile phase*

Sample solution: Transfer an amount of powdered Tablets (from NLT 20 Tablets) nominally equivalent to 50 mg of oxybutynin chloride to a 1000-mL volumetric flask. Add about 400 mL of *Mobile phase*, sonicate for about 10 min, shake by mechanical means for about 45 min, and dilute with *Mobile phase* to volume.

Chromatographic system

(See <u>Chromatography</u> (621), <u>System Suitability</u>.)

Mode: LC

Detector: UV 203 nm

Column: 4-mm \times 30-cm; packing <u>L10</u>

Flow rate: 2 mL/min **Injection size:** 20 μL

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of $C_{22}H_{31}NO_3 \cdot HCl$ in the portion of Tablets taken:

Result =
$$(r_{IJ}/r_S) \times (C_S/C_{IJ}) \times 100$$

 r_U = peak response from the Sample solution

 r_S = peak response from the *Standard solution*

 C_S = concentration of <u>USP Oxybutynin Chloride RS</u> in the *Standard solution* (mg/mL)

 C_{II} = nominal concentration of the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

Change to read:

• **DISSOLUTION** (711)

Test 1

Medium: Water; 900 mL **Apparatus 2:** 50 rpm

Time: 30 min

 $\textbf{Sample solution:} \ \text{Pass a portion of the solution under test through a suitable 0.45-$\mu m filter.} \ \text{Dilute}$

with Medium if necessary.

Analysis: Determine the amount of $C_{22}H_{31}NO_3 \cdot HCI$ dissolved using the method set forth in the *Assay*, making any necessary modifications to the concentration of the *Standard solution* to

Tolerances: NLT 80% (Q) of the labeled amount of $C_{22}H_{31}NO_3 \cdot HCl$ is dissolved.

correspond to that of the solution under test and injecting 100 µL of both solutions.

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.

Medium: 0.01 N hydrochloric acid; 900 mL

Apparatus 2: 50 rpm

Time: 30 min

Standard solution: 5 μ g/mL of <u>USP Oxybutynin Chloride RS</u> in *Medium*. This solution is stable for 5

days at ambient conditions.

Sample solution: Pass a portion of the solution under test through a suitable 0.45-µm filter,

discarding the first few mL.

Mobile phase: Water, acetonitrile, and phosphoric acid (760:240:1)

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 203 nm

Column: 4.6-mm \times 7.5-cm; 3.5- μ m packing L7

Column temperature: 40° Flow rate: 1.5 mL/min Injection size: 100 µL

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 3.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of oxybutynin chloride dissolved:

Result = $(r_U/r_S) \times (C_S/L) \times V \times 100$

 r_U = peak response from the Sample solution

 $r_{\rm S}$ = peak response from the Standard solution

 C_{S} = concentration of oxybutynin chloride in the *Standard solution*

L = Tablet label claim (mg)

V = volume of Medium (mL), 900

Tolerances: NLT 80% (Q) of the labeled amount of oxybutynin chloride is dissolved.

▲ Test 3: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 3.

Medium: 0.1 N hydrochloric acid; 500 mL, degassed

Apparatus 2: 50 rpm

Time: 30 min

Standard solution: 0.01 mg/mL of <u>USP Oxybutynin Chloride RS</u> in *Medium*. Sonicate to dissolve, if

necessary.

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore

size, discarding the first 5 mL of the filtrate.

Solution A: 0.05% Trifluoroacetic acid in water

Solution B: 0.05% Trifluoroacetic acid in acetonitrile

Mobile phase: Solution A and Solution B (60:40)

Chromatographic system

(See <u>Chromatography (621), System Suitability</u>.)

Mode: LC

Detector: UV 203 nm

Column: 4.6-mm \times 15-cm; 3.5- μ m packing <u>L1</u>

Column temperature: 45°

Flow rate: 1 mL/min
Injection volume: 65 µL

Run time: NLT 2.5 times the retention time of oxybutynin

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 3.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of oxybutynin chloride (C22H31NO3·HCI)

dissolved:

Result =
$$(r_U/r_S) \times C_S \times 1/L \times V \times 100$$

 r_U = peak response of oxybutynin from the Sample solution

 r_S^{\prime} = peak response of oxybutynin from the *Standard solution*

 C_S = concentration of <u>USP Oxybutynin Chloride RS</u> in the *Standard solution* (mg/mL)

L = label claim (mg/Tablet)

V = volume of Medium, 500 mL

Tolerances: NLT 80% (Q) of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCI$) is

dissolved. ▲ (RB 1-Apr-2021)

• **UNIFORMITY OF DOSAGE UNITS** (905): Meet the requirements

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight, light-resistant containers.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- <u>USP REFERENCE STANDARDS (11)</u> <u>USP Oxybutynin Chloride RS</u>

Page Information:

Not Applicable

Current DocID:

© 2021 The United States Pharmacopeial Convention All Rights Reserved.