Add the following:

Venlafaxine Hydrochloride Extended-Release Capsules

DEFINITION
Venlafaxine Hydrochloride Extended-Release Capsules contain an amount of Venlafaxine Hydrochloride equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of venlafaxine (C₁₇H₂₇NO₂).

IDENTIFICATION
- **A. ULTRAVIOLET ABSORPTION (197U)**
 Wavelength range: 250–310 nm
- **B.** The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY
Procedure
- **Mobile phase:** Acetonitrile, triethylamine, and water (250:4:750). Adjust with phosphoric acid to a pH of 3.5.
- **Standard solution:** 0.25 mg/mL of USP Venlafaxine Hydrochloride RS in Mobile phase
 - Sample stock solution: Nominally 1.0 mg/mL of venlafaxine (from the contents of NLT 10 Capsules) prepared as follows. Transfer a weighed quantity of Capsule contents to a suitable volumetric flask. Add 8% of the flask volume of acetonitrile, and shake for 40 min. Add 50% of flask volume of Mobile phase, and shake for an additional 20 min. Dilute with Mobile phase to volume. Pass a portion through a suitable filter of 0.45-µm pore size.
 - **Sample solution:** 0.25 mg/mL of venlafaxine (using the filtrate from the Sample solution) in Mobile phase
- **Chromatographic system**
 (See Chromatography (621), System Suitability.)
 Mode: LC
 Detector: UV 226 nm
 Column: 4.6-mm × 25-cm; 5-µm packing L1
 Flow rate: 1 mL/min
 Injection volume: 10 µL
 Run time: 1.5 times the retention time of venlafaxine
- **System suitability**
 - **Sample:** Standard solution
 - **Suitability requirements**
 - **Tailing factor:** NMT 2.5
 - **Relative standard deviation:** NMT 1.5%
- **Analysis**
 - **Samples:** Standard solution and Sample solution
 - Calculate the percentage of the labeled amount of venlafaxine (C₁₇H₂₇NO₂) in the portion of Capsules taken:
 \[
 \text{Result} = \frac{(r_U/r_S) \times (C_{US}/C_{RS}) \times (M_{RS}/M_{US})}{100}
 \]
 - **rₚ** = peak response from the Sample solution
 - **rₛ** = peak response from the Standard solution
 - **Cₚ** = concentration of USP Venlafaxine Hydrochloride RS in the Standard solution (mg/mL)
 - **Cₛ** = nominal concentration of venlafaxine in the Sample solution (mg/mL)
 - **Mₚ** = molecular weight of venlafaxine, 277.40
 - **Mₛ** = molecular weight of venlafaxine hydrochloride, 313.86
- **Acceptance criteria:** 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

DISOLUTION (711)
Test 1
- **Medium:** Water; 900 mL
- **Apparatus 1:** 100 rpm
- **Times:** 3, 6, 16, and 24 h
- **Mobile phase:** Acetonitrile, triethylamine, and water (450:4:550). Adjust with phosphoric acid to a pH of 3.5.
- **Standard solution:** 0.05 mg/mL of USP Venlafaxine Hydrochloride RS in acetonitrile, from the Standard solution
- **Sample stock solution** (88 1-Oct-2012): Pass a portion of venlafaxine (from the contents of NLT 10 Capsules) the solution under test through a suitable filter.
- **Sample solution:** 0.25 mg/mL of venlafaxine (using the filtrate from the Sample stock solution) in Mobile phase
- **Chromatographic system**
 (See Chromatography (621), System Suitability.)
 Mode: LC
 Detector: UV 274 nm
 Relative standard deviation: NMT 2.0%
 Column: 4.6-mm × 25-cm; 5-µm packing L1
 Flow rate: 1 mL/min
 Injection volume: 60 µL
- **System suitability**
 - **Sample:** Standard solution
 - **Suitability requirements**
 - **Tailing factor:** NMT 2.5
 - **Relative standard deviation:** NMT 2.0%
- **Analysis**
 Calculate the concentration, \(Cₚ\), of venlafaxine (C₁₇H₂₇NO₂) in the Medium (mg/mL) after time point \(t\):
 \[
 rₚ = \text{peak response from the Sample solution}
 rₛ = \text{peak response from the Standard solution}
 Cₛ = \text{nominal concentration of venlafaxine in the Sample solution (mg/mL)}
 Mₚ = \text{molecular weight of venlafaxine, 277.40}
 Mₛ = \text{molecular weight of venlafaxine hydrochloride, 313.86}
 \]
 \[
 \text{Result} = \frac{(rₚ/rₛ) \times (Cₛ/Cₚ) \times (Mₚ/Mₛ)}{100}
 \]
©2012 The United States Pharmacopeial Convention All Rights Reserved.
2 Venlafaxine

Calculate the percentage of the labeled amount (Q) of venlafaxine \((C_17H_27NO_2)\) dissolved at each time point \(i\):

\[
\text{Result}_1 = C_i \times V \times (1/L) \times 100
\]

\[
\text{Result}_2 = \left[\left(C_i \times (V - V_i)\right) + [C_i \times V_i]\right] \times (1/L) \times 100
\]

\[
\text{Result}_3 = \left[\left(C_i \times (V - (2 \times V_i))\right) + \left(C_i \times C_i \times V_i\right)\right] \times (1/L) \times 100
\]

\[
\text{Result}_4 = \left[\left(C_i \times (V - (3 \times V_i))\right) + \left(C_i \times C_i \times C_i \times V_i\right)\right] \times (1/L) \times 100
\]

\(C_i\) = concentration of venlafaxine in Medium in the portion of sample withdrawn at time point \(i\) \((mg/mL)\)

\(V\) = volume of Medium, 900 mL

\(V_i\) = volume of the Sample solution withdrawn from the Medium \((mL)\)

\(L\) = label claim (mg/Capsule)

Tolerances: See Table 1.

<table>
<thead>
<tr>
<th>Time Point, (i)</th>
<th>Time ((h))</th>
<th>Amount Dissolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>NMT 40%</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>35%-60%</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>60%-85%</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>NLT 75%</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of venlafaxine \((C_17H_27NO_2)\) dissolved at the times specified conform to Acceptance Table 2 in Dissolution (711).

Test 2: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 2.

Medium: Water; 900 mL

Apparatus 1: 100 rpm

Time: 2, 4, 8, 12, and 20 h

Capsule correction solution: Dissolve 6 empty Capsule shells in 900 mL of water.

Blank: Dilute 150 mL of Capsule correction solution with water to 900 mL.

Standard solution: \((L/900)\) mg/mL of USP Venlafaxine Hydrochloride RS, where \(L\) is the label claim, in mg/Capsule, prepared as follows. To a weighed amount of the standard equivalent to the sample claim, add Capsule correction solution to fill 17% of final flask volume. Dilute with water to volume.

Sample solution: Pass a portion of the solution under test through a suitable filter.

Instrumental conditions

Mode: UV

Detector: 274 nm

Analysis

Samples: Standard solution and Sample solution

[NOTE—If necessary, the volume of Medium may be corrected for volumes removed from any previous sample time points.]

Calculate the concentration, \(C_i\), of venlafaxine \((C_17H_27NO_2)\) in Medium \((mg/mL)\) after time point \(i\):

\[\text{Result} = \left(\frac{r_i}{r_f}\right) \times C_s \times \left(\frac{M_i}{M_s}\right)\]

\(r_f\) = peak response from the Sample solution

\(C_s\) = concentration of USP Venlafaxine Hydrochloride RS in the Standard solution \((mg/mL)\)

\(M_i\) = molecular weight of venlafaxine, 277.40

\(M_s\) = molecular weight of venlafaxine hydrochloride, 313.86

Calculate the percentage of the labeled amount (Q) of venlafaxine \((C_17H_27NO_2)\) dissolved at each time point \(i\):

\[
\text{Result}_1 = C_i \times V \times (1/L) \times 100
\]

\[
\text{Result}_2 = \left[\left(C_i \times (V - V_i)\right) + [C_i \times V_i]\right] \times (1/L) \times 100
\]

\[
\text{Result}_3 = \left[\left(C_i \times (V - (2 \times V_i))\right) + \left(C_i \times C_i \times V_i\right)\right] \times (1/L) \times 100
\]

\[
\text{Result}_4 = \left[\left(C_i \times (V - (3 \times V_i))\right) + \left(C_i \times C_i \times C_i \times V_i\right)\right] \times (1/L) \times 100
\]

\(C_i\) = concentration of venlafaxine in Medium in the portion of sample withdrawn at time point \(i\) \((mg/mL)\)

\(V\) = volume of Medium, 900 mL

\(V_i\) = volume of the Sample solution withdrawn from the Medium \((mL)\)

\(L\) = label claim (mg/Capsule)

Tolerances: See Table 2.

<table>
<thead>
<tr>
<th>Time Point, (i)</th>
<th>Time ((h))</th>
<th>Amount Dissolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>10%-30%</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>33%-53%</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>58%-78%</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>68%-88%</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>NLT 80%</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of venlafaxine \((C_17H_27NO_2)\) dissolved at the times specified conform to Acceptance Table 2 in Dissolution (711).

Test 3: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 3.

Medium: 0.1 N hydrochloric acid; 900 mL

Apparatus 1: 100 rpm

Time: 4, 8, and 16 h

Buffer: Dissolve 1.4 g of monobasic potassium phosphate \((88-00-3)\) in 1 L of water. Add 5 mL of triethylamine, and adjust with phosphoric acid to a pH of 3.0.

Mobile phase: Acetonitrile and Buffer \((35:65)\)

Standard stock solution: 0.9 mg/mL of USP Venlafaxine Hydrochloride RS in Medium

Standard solution: \((L/750)\) mg/mL of USP Venlafaxine Hydrochloride RS in Medium from the Standard stock solution, where \(L\) is the label claim, in mg/Capsule. Pass a portion through a suitable filter of 0.45-μm pore size.

Sample solution: *At the end of the specified time interval, withdraw a known volume of the solution from the dissolution vessel, and replace with an equal volume of fresh Medium. Pass a portion of the solution under test through a suitable filter of 0.45-μm pore size.

©2012 The United States Pharmacopeial Convention All Rights Reserved.
Chromatographic system
(See Chromatography (621), System Suitability.)
Mode: LC
Detector: UV 225 nm
Column: 4.6-mm x 25-cm; 5-µm packing L1
Flow rate: 1 mL/min
Column temperature: 30°
Injection volume: 10 µL
Run time: 2 times the retention time of venlafaxine

System suitability
Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0
Relative standard deviation: NMT 2.0%

Analysis
Samples: Standard solution and Sample solution
Calculate the concentration, C_i, of venlafaxine ($C_{17}H_{27}NO_2$) in Medium (mg/mL) after time point i:

$Result_i = \frac{r_i}{r_s} \times C_i \times (M_{r1}/M_{r2})$

r_i = peak response from the Sample solution
r_s = peak response from the Standard solution
C_i = concentration of USP Venlafaxine Hydrochloride RS in the Standard solution (mg/mL)
M_{r1} = molecular weight of venlafaxine, 277.40
M_{r2} = molecular weight of venlafaxine hydrochloride, 313.86

Calculate the percentage of the labeled amount (Q) of venlafaxine ($C_{17}H_{27}NO_2$) dissolved at each time point i:

$Result_1 = C_i \times V \times (1/L) \times 100$

$Result_2 = ([C_i \times V] + [C_{i} \times V_i]) \times (1/L) \times 100$

$Result_3 = ([C_i \times V] + [C_i + C_{i} \times V_i]) \times (1/L) \times 100$

C_i = concentration of venlafaxine in Medium in the portion of sample withdrawn at time point i (mg/mL)
V = volume of Medium, 900 mL
V_i = volume of the Sample solution withdrawn from the vessel and replaced with Medium (mL)
L = label claim (mg/Capsule)

Tolerances: See Table 3.

<table>
<thead>
<tr>
<th>Time Point, i</th>
<th>Time (h)</th>
<th>Amount Dissolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>35%-55%</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>65%-90%</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>NLT 85%</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of venlafaxine ($C_{17}H_{27}NO_2$) dissolved at the times specified conform to Acceptance Table 2 in Dissolution (711).

Test 4: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 4.

Medium: Water; 900 mL
Apparatus 1: 100 rpm
Time: 2, 4, 8, 12 and 20 h
Solution A: Dilute 10 mL of phosphoric acid with water to 100 mL.

Buffer: 11.4 g/L of ammonium dihydrogen phosphate in water
Standard stock solution: 0.24 mg/mL of USP Venlafaxine Hydrochloride RS in Medium. Sonication may be used to aid in dissolution.

Standard solution: See Table 4 for the concentration of USP Venlafaxine Hydrochloride RS in Medium from the Standard stock solution. Using a glass syringe, pass a portion through a suitable filter of 0.45-µm pore size.

Table 4

<table>
<thead>
<tr>
<th>Label Claim (µL)</th>
<th>Standard Solution (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.5</td>
<td>0.05</td>
</tr>
<tr>
<td>75</td>
<td>0.1</td>
</tr>
<tr>
<td>150</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Sample solution: At the end of the specified time interval, withdraw a known volume of the solution from the dissolution vessel, and replace with an equal volume of fresh Medium. For Capsules that are labeled to contain 150 mg of venlafaxine, dilute this solution with an equal volume of Medium. Using a glass syringe, pass a portion of the solution under test through a suitable filter 0.45-µm pore size.

Chromatographic system
(See Chromatography (621), System Suitability.)
Mode: LC
Detector: UV 225 nm
Column: 4.6-mm x 25-cm; 5-µm packing L7
Flow rate: 1.2 mL/min
Injection volume: 20 µL
Run time: 2 times the retention time of venlafaxine

System suitability
Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0
Relative standard deviation: NMT 2.0%

Analysis
Samples: Standard solution and Sample solution
Calculate the concentration, C_i, of venlafaxine ($C_{17}H_{27}NO_2$) in Medium (mg/mL) after time point i:

$Result_i = \frac{r_i}{r_s} \times C_i \times (M_{r1}/M_{r2})$

r_i = peak response from the Sample solution
r_s = peak response from the Standard solution
C_i = concentration of USP Venlafaxine Hydrochloride RS in the Standard solution (mg/mL)
D = dilution factor for the Sample solution

For Capsules labeled to contain 150 mg of venlafaxine; 1 for Capsules labeled to contain 37.5 or 75 mg of venlafaxine

M_{r1} = molecular weight of venlafaxine, 277.40
M_{r2} = molecular weight of venlafaxine hydrochloride, 313.86

©2012 The United States Pharmacopeial Convention All Rights Reserved.
Venlafaxine

Calculate the percentage of the labeled amount (Q) of venlafaxine (C₁₇H₂₇NO₂) dissolved at each time point

\[Q = \frac{C_i \times V}{C_l \times \text{Volume of Medium, } 900 \text{ mL}} \times 100 \]

where

- \(Q \) is the concentration of USP venlafaxine (mg/mL) after time point \(i \)
- \(C_i \) is the concentration of venlafaxine (C₁₇H₂₇NO₂) in the Medium (mg/mL) after time point \(i \)
- \(C_l \) is the label claim (mg/Capsule)
- \(V \) is the volume of the Sample solution withdrawn from the vessel and replaced with Medium (mL)

Tolerances: See Table 5.

<table>
<thead>
<tr>
<th>Time Point, (i)</th>
<th>Time (h)</th>
<th>Amount Dissolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>10%-30%</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>35%-55%</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>60%-80%</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>NLT 70%</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>NLT 85%</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of venlafaxine (C₁₇H₂₇NO₂) dissolved at the times specified conform to Acceptance Table 2 in Dissolution (711).

Test 5: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 6.

Medium: Water, 900 mL

Apparatus 1: 100 rpm

Time: 2, 4, 8, and 24 h

Buffer: 11.4 g/L of monobasic ammonium phosphate in water. Adjust with dilute phosphoric acid (1 in 10) or dilute ammonia solution (1 in 10) to a pH of 4.4.

Mobile phase: Acetonitrile and Buffer (25:75, 74:5)

Standard solution: (1/900) mg/mL of USP Venlafaxine Hydrochloride RS in Medium, where \(L \) is the label claim, in mg/Capsule.

Sample solution: At the end of the specified time interval, withdraw a known volume of the solution from the dissolution vessel, and replace with an equal volume of fresh Medium. Pass a portion of the withdrawn sample through a suitable filter of 0.45-µm pore size.

Chromatographic system
(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 225 nm

Column: 4.6-mm x 15-cm; 5-µm packing L7

Flow rate: 1 mL/min

Injection volume: 10 µL

Run time: 1.5 times the retention time of venlafaxine

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration, \(C_i \), of venlafaxine (C₁₇H₂₇NO₂) in the Medium (mg/mL) after time point \(i \)

\[Q = \frac{(r_i/r_s) \times C_i}{(M_i/M_d)} \]

where

- \(Q \) is the concentration of USP venlafaxine (mg/mL) after time point \(i \)
- \(r_i \) is peak response from the Sample solution
- \(r_s \) is peak response from the Standard solution
- \(C_i \) is concentration of USP Venlafaxine Hydrochloride RS in the Standard solution (mg/mL)
- \(M_i \) is molecular weight of venlafaxine, 277.40
- \(M_d \) is molecular weight of venlafaxine hydrochloride, 313.86

Calculate the percentage of the labeled amount (Q) of venlafaxine (C₁₇H₂₇NO₂) dissolved at each time point

\[Q = \frac{C_i \times V}{C_l \times \text{Volume of Medium, } 900 \text{ mL}} \times 100 \]

Tolerances: See Table 6.

<table>
<thead>
<tr>
<th>Time Point, (i)</th>
<th>Time (h)</th>
<th>Amount Dissolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>NMT 20%</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>35%-55%</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>60%-80%</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>NLT 80%</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of venlafaxine (C₁₇H₂₇NO₂) dissolved at the times specified conform to Acceptance Table 2 in Dissolution (711).

Test 6: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 6.

Medium: Water, 900 mL, deaerated

Apparatus 1: 100 rpm

Time: 2, 4, 8, 12 and 24 h

Buffer: 10 mL/L of triethylamine in water adjusted with phosphoric acid to a pH of 3.0

Mobile phase: Acetonitrile and Buffer (20:80)

Standard solution: (1/900) mg/mL of venlafaxine from USP Venlafaxine Hydrochloride RS in Medium, where \(L \) is the label claim, in mg/Capsule.

Sample solution: Centrifuge a portion of the solution under test.

Chromatographic system
(See Chromatography (621), System Suitability.)
Venlafaxine

Mode: LC
Detector: UV 227 nm
Column: 4.6-mm × 15-cm; 5-μm packing L1
Flow rate: 2.5 mL/min
Injection volume: 20 μL
Run time: 1.5 times the retention time of venlafaxine

System suitability
- **Sample:** Standard solution
- **Suitability requirements**
 - **Tailing factor:** NMT 2.0
 - **Relative standard deviation:** NMT 2.0%

Analysis
- **Samples:** Standard solution and Sample solution
 - Calculate the concentration, C, of venlafaxine (C₁₇H₂₇NO₂) in the Medium (mg/mL) after time point i:
 \[
 \text{Result}_i = \left(\frac{r_0}{r_i} \right) \times C_i \times \left(\frac{M_2}{M_1} \right)
 \]
 - Calculate the percentage of the labeled amount (Q) of venlafaxine (C₁₇H₂₇NO₂) dissolved at each time point i:
 \[
 \text{Result}_i = C_i \times V \times (1/L) \times 100
 \]

Tolerances: See Table 7.

<table>
<thead>
<tr>
<th>Time Point, i</th>
<th>Time (h)</th>
<th>Amount Dissolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>NMT 30%</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>40%-60%</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>60%-80%</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>70%-90%</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>NLT 85%</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of venlafaxine (C₁₇H₂₇NO₂) dissolved at the times specified conform to Acceptance Table 2 in Dissolution (711).

Test 7: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 7.
- **Medium:** Water; 900 mL
- **Apparatus 1:** 100 rpm
- **Time:** 2, 4, 8, 12 and 20 h
- **Buffer:** 1.7 g/L of dibasic potassium phosphate in water. Adjust with phosphoric acid (1 in 10) to a pH of 7.0.
- **Mobile phase:** Acetonitrile and Buffer (80:20)
- **Standard solution:** (L/900) mg/mL of USP Venlafaxine Hydrochloride RS in Medium, where L is the label claim, in mg/Capsule.

Sample solution: At the end of the specified time interval, withdraw a known volume of the solution from the dissolution vessel, and replace with an equal volume of fresh Medium. Pass a portion of the withdrawn sample through a suitable filter of 0.45-μm pore size.

Chromatographic system
(See Chromatography (621), System Suitability.)
- **Mode:** LC
- **Detector:** UV 227 nm
- **Column:** 4.6-mm × 25-cm; 5-μm packing L1
- **Column temperature:** 45°C
- **Flow rate:** 1.5 mL/min
- **Injection volume:** 10 μL
- **Run time:** 2 times the retention time of venlafaxine

System suitability
- **Sample:** Standard solution
- **Suitability requirements**
 - **Tailing factor:** NMT 2.0
 - **Relative standard deviation:** NMT 2.0%
- **Analysis**
 - Calculate the concentration, C, of venlafaxine (C₁₇H₂₇NO₂) in the Medium (mg/mL) after time point i:
 \[
 \text{Result}_i = \left(\frac{r_0}{r_i} \right) \times C_i \times \left(\frac{M_2}{M_1} \right)
 \]
 - Calculate the percentage of the labeled amount (Q) of venlafaxine (C₁₇H₂₇NO₂) dissolved at each time point i:
 \[
 \text{Result}_i = C_i \times V \times (1/L) \times 100
 \]

©2012 The United States Pharmacopeial Convention All Rights Reserved.
Venlafaxine

\[C_i = \text{concentration of venlafaxine in Medium in the portion of sample withdrawn at time point } i \]
\[V = \text{volume of Medium, 900 mL} \]
\[V_i = \text{volume of the Sample solution withdrawn from the vessel and replaced with Medium (mL)} \]
\[I = \text{label claim (mg/Capsule)} \]

Tolerances: See Table 8.

<table>
<thead>
<tr>
<th>Time Point, (i)</th>
<th>Time (h)</th>
<th>Amount Dissolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>NMT 10%</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>NMT 30%</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>40%-70%</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>60%-90%</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>NLT 80%</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of venlafaxine (C\(_{17}H_{27}NO_2\)) dissolved at the times specified conform to Acceptance Table 2 in Dissolution (711).

Test 8: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 8.

Medium: Water; 900 mL

Apparatus 1: 100 rpm

| Time | 1, 6, 16, and 24 h |

Diluent: Acetonitrile and water (30:70)

Buffer: Dissolve 8.9 g of dibasic sodium phosphate dihydrate and 2.5 g of sodium 1-octanesulfonate in 1 L of water. Adjust with 10% phosphoric acid to a pH of 3.0.

Mobile phase: Acetonitrile and Buffer (32:68)

Standard stock solution: 0.9 mg/mL of USP Venlafaxine Hydrochloride RS prepared as follows: Dissolve the weighed amount of the Standard first in acetonitrile using 20% of flask volume. Sonicate to dissolve, and dilute with Diluent to volume.

Standard solution: ([L/900]) mg/mL of USP Venlafaxine Hydrochloride RS from Standard stock solution in Diluent, where \(L \) is the label claim, in mg/Capsule.

Sample solution: At the end of the specified time interval, withdraw a known volume of the solution from the dissolution vessel, and replace with an equal volume of fresh Medium. Pass a portion of the withdrawn sample through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 226 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1.5 mL/min

Injection volume: 20 µL

Run time: 1.7 times the retention time of venlafaxine

System suitability

Sample: Standard solution

Suitability requirements

- **Tailing factor:** NMT 2.0
- **Relative standard deviation:** NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration, \(C_i \), of venlafaxine (C\(_{17}H_{27}NO_2\)) in the Medium (mg/mL) after time point \(i \).

\[\text{Result} = \left(\frac{r_0}{r_i} \right) \times C_i \times (M_1/M_2) \]

\(r_0 \) = peak response from the Sample solution

\(r_i \) = peak response from the Standard solution

\(C_i \) = concentration of USP Venlafaxine Hydrochloride RS in the Standard solution (mg/mL)

\(M_1 \) = molecular weight of venlafaxine, 277.40

\(M_2 \) = molecular weight of venlafaxine hydrochloride, 313.86

Calculate the percentage of the labeled amount (\(Q \)) of venlafaxine (C\(_{17}H_{27}NO_2\)) dissolved at each time point \(t \).

\[\text{Result}_1 = C_1 \times V \times (1/L) \times 100 \]

\[\text{Result}_2 = \left[(C_2 \times V) + [C_1 \times V_1] \right] \times (1/L) \times 100 \]

\[\text{Result}_3 = \left[(C_3 \times V) + [C_2 + C_1] \times V_1 \right] \times (1/L) \times 100 \]

\[\text{Result}_4 = \left[(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_1] \right] \times (1/L) \times 100 \]

\(C_1 \) = concentration of venlafaxine in Medium in the portion of sample withdrawn at time point \(i \) (mg/mL)

\(V \) = volume of Medium, 900 mL

\(V_i \) = volume of the Sample solution withdrawn from the vessel and replaced with Medium (mL)

\(L \) = label claim (mg/Capsule)

Tolerances: See Table 9.

<table>
<thead>
<tr>
<th>Time Point, (i)</th>
<th>Time (h)</th>
<th>Amount Dissolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>NMT 25%</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>50%-70%</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>70%-95%</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>NLT 80%</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of venlafaxine (C\(_{17}H_{27}NO_2\)) dissolved at the times specified conform to Acceptance Table 2 in Dissolution (711).

UNIFORMITY OF DOSAGE UNITS (905): Meet the requirements

IMPURITIES

Organic impurities

Mobile phase, Standard solution, and Sample solution: Proceed as directed in the Assay.

System suitability solution: 0.25 µg/mL of USP Venlafaxine Related Compound A RS in the Standard solution

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 226 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1 mL/min

Injection volume: 10 µL

Run time: 4 times the retention time of venlafaxine

System suitability

Sample: System suitability solution

[NOTE—The relative retention times for venlafaxine related compound A and venlafaxine are 0.9 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 1.5 between venlafaxine related compound A and venlafaxine

©2012 The United States Pharmacopoeial Convention All Rights Reserved.
Tailing factor: NMT 2.0 for venlafaxine
Relative standard deviation: NMT 5.0% for venlafaxine

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Capsules taken:

\[
\text{Result} = \left(\frac{r_U}{r_S} \right) \times \left(\frac{C_S}{C_U} \right) \times \left(\frac{M_1}{M_2} \right) \times 100
\]

- \(r_U \) = peak response of each individual impurity from the Sample solution
- \(r_S \) = peak response of venlafaxine from the Standard solution
- \(C_S \) = concentration of USP Venlafaxine Hydrochloride RS in the Standard solution (mg/mL)
- \(C_U \) = nominal concentration of venlafaxine in the Sample solution (mg/mL)
- \(M_1 \) = molecular weight of venlafaxine, 277.40
- \(M_2 \) = molecular weight of venlafaxine hydrochloride, 313.86

Acceptance criteria

- Individual impurities: NMT 0.2%
- Total impurities: NMT 0.5%

ADDITIONAL REQUIREMENTS

- **Packaging and Storage:** Preserve in well-closed containers. Store at controlled room temperature.

- **Labeling:** When more than one Dissolution test is given, the labeling states the Dissolution test used only if Test 1 is not used.

Change to read:

- **USP Reference Standards (11)**
 - USP Venlafaxine Hydrochloride RS
 - USP Venlafaxine Related Compound A RS
 1-(1-(4-Methoxyphenyl)-2-(methylamino)ethyl)cyclohexanol hydrochloride: \(C_{16}H_{25}NO_2 \cdot HCl \) 299.84 (RB 1-Oct-2012) (RB 1-Jul-2012)