Metformin Hydrochloride Extended-Release Tablets

Type of Posting: Notice of Intent to Revise
Posting Date: 28–Sept–2018
Targeted Official Date: To Be Determined, Revision Bulletin
Expert Committee: Chemical Medicines Monographs 3

In accordance with section 7.04 (c) of the 2015–2020 Rules and Procedures of the Council of Experts and the Pending Monograph Guideline, this is to provide notice that the Chemical Medicines Monographs 3 Expert Committee intends to revise the Metformin Hydrochloride Extended-Release Tablets monograph.

Based on the supporting data received from a manufacturer awaiting FDA approval, the Expert Committee proposes to revise the Metformin Hydrochloride Extended-Release Tablets monograph to add Dissolution Test 15.

The proposed revision is contingent on FDA approval of a product that meets the proposed monograph specifications. The proposed revision will be published as a Revision Bulletin and an official date will be assigned to coincide as closely as possible with the FDA approval of the associated product.

See below for additional information about the proposed text.¹

Should you have any questions, please contact Andrea F. Carney, Associate Scientific Liaison to the Chemical Medicines Monographs 3 Expert Committee (301-816-8155 or afc@usp.org).

¹ This text is not the official version of a USP–NF monograph and may not reflect the full and accurate contents of the currently official monograph. Please refer to the current edition of the USP–NF for official text.

USP provides this text to indicate changes that we anticipate will be made official once the product subject to this proposed revision under the Pending Monograph Program receives FDA approval. Once FDA approval is granted for the associated revision request, a Revision Bulletin will be posted that will include the changes indicated herein, as well as any changes indicated in the product’s final approval, combined with the text of the monograph as effective on the date of approval. Any revisions made to a monograph under the Pending Monograph Program that are posted without prior publication for comment in the Pharmacopeial Forum must also meet the requirements outlined in the USP Guideline on Use of Accelerated Processes for Revisions to the USP–NF.
Metformin Hydrochloride Extended-Release Tablets

DEFINITION
Metformin Hydrochloride Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of metformin hydrochloride (C₄H₁₁N₅·HCl).

IDENTIFICATION
- **A.** The retention time of the major peak from the Sample solution corresponds to that from the Standard solution, as obtained in the Assay.

ASSAY
- **PROCEDURE**
 - **Buffer solution:** 0.5 g/L of sodium 1-heptanesulfonate and 0.5 g/L of sodium chloride in water. Before final dilution, adjust with 0.06 M phosphoric acid to a pH of 3.85.
 - **Mobile phase:** Acetonitrile and Buffer solution (1:9). [Note—To improve the separation, the composition of acetonitrile and Buffer solution may be changed to 1:19, if necessary.]
 - **Diluent:** 1.25% solution of acetonitrile in water
 - **Standard solution:** (U/4000) mg/mL of USP Metformin Hydrochloride RS in Diluent, where L is the labeled quantity, in mg, of metformin hydrochloride in each Tablet
 - **System suitability stock solution:** 12.5 µg/mL each of USP Metformin Related Compound B RS and USP Metformin Related Compound C RS in Diluent
 - **System suitability solution:** Dilute 0.5 mL of the System suitability stock solution with the Standard solution to 50 mL.
 - **Sample stock solution:** Finely powder NLT 10 Tablets. Transfer powder, equivalent to the average Tablet weight, to a homogenization vessel, and add 500 mL of a 10% acetonitrile solution. Alternately, homogenize and allow to soak until the sample is fully homogenized. [Note—A suggested homogenization sequence is as follows. Homogenize the sample using five pulses, each of 5 s, at about 20,000 rpm, and allow to soak for 2 min. Repeat these steps two additional times.]
 - **Sample solution:** Pass a portion of the Sample stock solution through a suitable filter of 0.45-µm pore size, discarding the first 3 mL of filtrate. Transfer 25 mL of the filtrate to a 200-mL volumetric flask, and dilute with water to volume.

Chromatographic system
(See Chromatography (621), System Suitability.)
- **Mode:** LC
- **Detector:** UV 218 nm
- **Column:** 3.9-mm x 30-cm; 10-µm packing L1
- **Column temperature:** 30°
- **Flow rate:** 1 mL/min
- **Injection volume:** 10 µL
- **Run time:** Until after the elution locus of metformin related compound C

System suitability
- **Sample:** System suitability solution
 - [Note—The relative retention times for metformin related compound B, metformin, and metformin related compound C are 0.86, 1.0, and 2.1–2.3, respectively. Metformin related compound C can have a variable retention time. The composition of the Mobile phase may be changed to 1:19, if it elutes at a relative retention time of less than 2.1.]

Suitability requirements
- **Resolution:** NLT 1.5 between the peaks due to metformin related compound B and metformin

Analysis
- **Samples:** Standard solution and Sample solution
 - Calculate the percentage of the labeled amount of metformin hydrochloride (C₄H₁₁N₅·HCl) in the portion of Tablets taken:
 - Result = \(\frac{(r_u/r_s) \times (C_s/C_d) \times 100}{L} \)
 - \(r_u \) = peak response from the Sample solution
 - \(r_s \) = peak response from the Standard solution
 - \(C_s \) = concentration of USP Metformin Hydrochloride RS in the Standard solution (mg/mL)
 - \(C_d \) = nominal concentration of metformin hydrochloride in the Sample solution
 - **Acceptance criteria:** 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

- **DISSOLUTION (711)**
 - **Test 1**
 - **Medium:** pH 6.8 phosphate buffer solution; 1000 mL
 - **Apparatus 1:** 100 rpm for Tablets labeled to contain 750 mg
 - **Apparatus 2:** 100 rpm for Tablets labeled to contain 500 mg
 - **Times:** 1, 3, and 10 h
 - **Detector:** UV 232 nm
 - **Standard solution:** USP Metformin Hydrochloride RS in Medium
 - **Sample solution:** Pass a portion of the solution under test through a suitable hydrophilic polyethylene filter of 0.45-µm pore size. Dilute, if necessary, with Medium to a concentration similar to that of the Standard solution.
 - **Analysis:** Calculate the percentage of the labeled amount of metformin hydrochloride (C₄H₁₁N₅·HCl) released at each time point:
 - Result = \(\left(\frac{A_U}{A_L} \times C_L \times (V - V_3) + (C_{60} \times V_3) + (C_{180} \times V_3) \right) \times \frac{1}{(100/L)} \)
 - \(A_U \) = absorbance of the Sample solution
 - \(A_L \) = absorbance of the Standard solution
 - \(C_L \) = concentration of the Standard solution (mg/mL)
 - \(V \) = initial volume of Medium in the vessel (mL)
 - \(V_3 \) = volume withdrawn from the vessel for previous samplings (mL)
 - \(C_{60} \) = concentration of metformin hydrochloride in Medium determined at 1 h (mg/mL)
 - \(C_{180} \) = concentration of metformin hydrochloride in Medium determined at 3 h (mg/mL)
 - \(L \) = label claim (mg/Tablet)
 - **Tolerances:** See Table 1.
2 Metformin

Table 1

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Amount Dissolved, 500-mg Tablet (%)</th>
<th>Amount Dissolved, 750-mg Tablet (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20–40</td>
<td>22–42</td>
</tr>
<tr>
<td>3</td>
<td>45–65</td>
<td>49–69</td>
</tr>
<tr>
<td>10</td>
<td>NL T 85</td>
<td>NL T 85</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of metformin hydrochloride (C₅H₁₁N₅·HCl) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

Test 2: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 2.

Medium: Prepare as directed for Test 1; 1000 mL.

Apparatus 2: 100 rpm

Times: 1, 2, 6, and 10 h

Detector: UV 232 nm

Standard solution: USP Metformin Hydrochloride RS in Medium

Sample solution: Pass a portion of the solution under test through a suitable hydrophilic polyethylene filter of 0.45-µm pore size. Dilute, if necessary, with Medium to a concentration that is similar to that of the Standard solution.

Analysis: Calculate, in mg/mL, the content of metformin hydrochloride (C₅H₁₁N₅·HCl) (Cᵢ) in Medium at each time point (t):

\[
\text{Result} = (A₀j \times Cᵢ \times D₀j)/Aᵢ
\]

A₀j = absorbance of the Sample solution

Cᵢ = concentration of metformin hydrochloride in the Standard solution (mg/mL)

D₀j = dilution factor of the solution under test

Aᵢ = absorbance of the Standard solution

Calculate the percentage of the labeled amount of metformin hydrochloride (C₅H₁₁N₅·HCl) dissolved at each time point by the following formulas.

Percentage dissolved at the first time point (1 h):

\[
\text{Result} = (C₁ \times V \times 100)/L
\]

C₁ = content of metformin hydrochloride in Medium at the first time interval (mg/mL)

V = volume of Medium, 1000 mL

L = label claim (mg/Tablet)

Percentage dissolved at the second time point (2 h):

\[
\text{Result} = [C₂ \times (V - SV₂) + Cᵢ \times SV₂] \times (100/L)
\]

C₂ = content of metformin hydrochloride in Medium at the second time interval (mg/mL)

V = volume of Medium, 1000 mL

SV₂ = volume of the sample withdrawn at 1 h (mL)

Cᵢ = content of metformin hydrochloride in Medium at 1 h (mg/mL)

L = label claim (mg/Tablet)

Percentage dissolved at the nth time point:

\[
\text{Result} = \left[Cₙ \times \left(V - (n - 1)V₂ \right) + (C₁ + C₂ + ... + Cₙ₋₁) \times V₂ \right] \times (100/L)
\]

Cₙ = content of metformin hydrochloride in Medium at the nth time interval (mg/mL)

V = volume of Medium, 1000 mL

V₂ = volume of sample withdrawn at each time interval (mL)

Cᵢ = as C₁, C₂, Cₙ, ..., the content of metformin hydrochloride in Medium at each time interval (mg/mL)

L = label claim (mg/Tablet)

Tolerances: See Table 2.

Table 2

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Amount Dissolved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20–40</td>
</tr>
<tr>
<td>2</td>
<td>35–55</td>
</tr>
<tr>
<td>6</td>
<td>65–85</td>
</tr>
<tr>
<td>10</td>
<td>NL T 85</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of metformin hydrochloride (C₅H₁₁N₅·HCl) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

Test 3: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 3.

Medium, Apparatus 1, and **Apparatus 2:** Proceed as directed in Test 1.

Times: 1, 2, 5, and 12 h for Tablets labeled to contain 500 mg; and 1, 3, and 10 h for Tablets labeled to contain 750 mg

Detector: UV 232 nm

Standard solution: USP Metformin Hydrochloride RS in Medium

Sample solution: Pass a portion of the solution under test through a suitable hydrophilic polyethylene filter of 0.45-µm pore size. Dilute, if necessary, with Medium to a concentration similar to that of the Standard solution.

Analysis: Calculate the percentage of the labeled amount of metformin hydrochloride (C₅H₁₁N₅·HCl) released at each time point:

\[
\text{Result} = \left(A₀j \times Cᵢ \times V - Vᵢ \right) + \left(C₅₀ \times Vᵢ \right) + \left(C₁₂₀ \times Vᵢ \right) + \left(C₂₀₀ \times Vᵢ \right) + \left(C₂₂₀ \times Vᵢ \right)\right] \times 100/L
\]

A₀j = absorbance of the Sample solution

Cᵢ = absorbance of the Standard solution (mg/mL)

C₅₀ = concentration of metformin hydrochloride in Medium determined at 1 h (mg/mL)

C₁₂₀ = concentration of metformin hydrochloride in Medium determined at 2 h (mg/mL)

C₂₀₀ = concentration of metformin hydrochloride in Medium determined at 5 h (mg/mL)

C₂₂₀ = concentration of metformin hydrochloride in Medium determined at 12 h (mg/mL)

L = label claim (mg/Tablet)

Tolerances: See Tables 3 and 4.
The percentages of the labeled amount of metformin hydrochloride \((\text{C}_4\text{H}_11\text{N}_5\cdot\text{HCl})\) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

Test 4: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 4.

Medium: Prepare as directed for Test 1; 1000 mL.

Apparatus 2: 100 rpm

Times: 1, 3, 6, and 10 h

Detector: UV 250 nm (shoulder)

Standard solution: USP Metformin Hydrochloride RS in Medium

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. Dilute, if necessary, with Medium to a concentration similar to that of the Standard solution.

Analysis: Calculate, in mg/mL, the content of metformin hydrochloride \((\text{C}_4\text{H}_11\text{N}_5\cdot\text{HCl})\) \((C)\), in Medium at each time point \((t)\), by the formulas specified in Test 2.

Table 3. For Tablets Labeled to Contain 500 mg

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Amount Dissolved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20–40</td>
</tr>
<tr>
<td>2</td>
<td>35–55</td>
</tr>
<tr>
<td>5</td>
<td>60–80</td>
</tr>
<tr>
<td>12</td>
<td>NLT 85</td>
</tr>
</tbody>
</table>

Table 4. For Tablets Labeled to Contain 750 mg

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Amount Dissolved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22–42</td>
</tr>
<tr>
<td>3</td>
<td>49–69</td>
</tr>
<tr>
<td>10</td>
<td>NLT 85</td>
</tr>
</tbody>
</table>

Tolerances: See Table 5.

Table 5

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Amount Dissolved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20–40</td>
</tr>
<tr>
<td>3</td>
<td>45–65</td>
</tr>
<tr>
<td>6</td>
<td>65–85</td>
</tr>
<tr>
<td>10</td>
<td>NLT 85</td>
</tr>
</tbody>
</table>

Notice of Intent to Revise

Official: To Be Determined
NOTES:
1. MATERIAL: 316SS OR EQUIVALENT .017 WIRE VERTICAL MEAS
 SQUARE WEAVE WITH .039 SQUARE OPENINGS.
2. ALL DIMENSIONS ARE IN INCHES. TOLERANCES TO BE +/- .010

Figure 1
Tolerances: See Table 6.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Amount Dissolved, 500-mg Tablet (%)</th>
<th>Amount Dissolved, 1000-mg Tablet (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NMT 30</td>
<td>NMT 30</td>
</tr>
<tr>
<td>8</td>
<td>60–85</td>
<td>65–90</td>
</tr>
<tr>
<td>16</td>
<td>NLT 90</td>
<td>NLT 90</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of metformin hydrochloride (C$_4$H$_{11}$N$_5$·HCl) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

NOTES:
1. MATERIAL: 316SS OR EQUIVALENT .017 WIRE VERTICAL MEAS SQUARE WEAVE WITH .039 SQUARE OPENINGS.
2. ALL DIMENSIONS ARE IN INCHES. TOLERANCES TO BE +/- .010

Test 6: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 6.
Medium: pH 6.8 phosphate buffer solution; 1000 mL, deaerated
Apparatus 2: 100 rpm, with USP sinker, if necessary
Detector: UV 233 nm
Standard solution: USP Metformin Hydrochloride RS in Medium
Sample solution: Pass a portion of the solution under test through a suitable hydrophilic polyethylene filter of 0.45-µm pore size. Dilute, if necessary, with Medium to a concentration similar to that of the Standard solution.
Analysis: Calculate the percentage of the labeled amount of metformin hydrochloride (C$_4$H$_{11}$N$_5$·HCl) released at each time point.
6 Metformin

Notice of Intent to Revise
Official: To Be Determined

Result = \left[\left(\frac{A_7}{A_6}\right) \times C_1 \times \left(V - V_j\right) + \left(C_{60} \times V_j\right) + \left(C_{180} \times V_j\right) + \left(C_{600} \times V_j\right) \times 100\right]/L

A_7 = \text{absorbance of the Sample solution}
A_6 = \text{absorbance of the Standard solution}
C_1 = \text{concentration of the Standard solution (mg/mL)}
V = \text{initial volume of Medium in the vessel (mL)}
V_j = \text{volume withdrawn from the vessel for previous samplings (mL)}
C_{60} = \text{concentration of metformin hydrochloride in Medium determined at 1 h (mg/mL)}
C_{180} = \text{concentration of metformin hydrochloride in Medium determined at 3 h (mg/mL)}
C_{600} = \text{concentration of metformin hydrochloride in Medium determined at 10 h (mg/mL)}
L = \text{label claim (mg/Tablet)}

Tolerances: See Table 7.

<p>| Table 7 |</p>
<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Amount Dissolved, 500-mg Tablet (%)</th>
<th>Amount Dissolved, 750-mg Tablet (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20–40</td>
<td>20–40</td>
</tr>
<tr>
<td>3</td>
<td>45–65</td>
<td>45–65</td>
</tr>
<tr>
<td>10</td>
<td>NLT 85</td>
<td>NLT 85</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of metformin hydrochloride (C₆H₁₁N₇·HCl) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

Test 7: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 7.
Medium: Prepare as directed in Test 1; 1000 mL.
Apparatus 1: 100 rpm for Tablets labeled to contain 750 mg
Apparatus 2: 50 rpm, with USP sinker, for Tablets labeled to contain 500 mg
Times: 1, 3, and 10 h
Detector: UV 232 nm
Standard solution: USP Metformin Hydrochloride RS in Medium
Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-μm pore size. Dilute, if necessary, with Medium to a concentration similar to that of the Standard solution.
Analysis: Calculate the percentage of the labeled amount of metformin hydrochloride (C₆H₁₁N₇·HCl) released at each time point:

Result = \left[\left(\frac{A_7}{A_6}\right) \times C_1 \times \left(V - V_j\right) + \left(C_{60} \times V_j\right) + \left(C_{180} \times V_j\right) + \left(C_{600} \times V_j\right) \times 100\right]/L

A_7 = \text{absorbance of the Sample solution}
A_6 = \text{absorbance of the Standard solution}
C_1 = \text{concentration of the Standard solution (mg/mL)}
V = \text{initial volume of Medium in the vessel (mL)}
V_j = \text{volume withdrawn from the vessel for previous samplings (mL)}
C_{60} = \text{concentration of metformin hydrochloride in Medium determined at 1 h (mg/mL)}
C_{180} = \text{concentration of metformin hydrochloride in Medium determined at 3 h (mg/mL)}
C_{600} = \text{concentration of metformin hydrochloride in Medium determined at 10 h (mg/mL)}
L = \text{label claim (mg/Tablet)}

Tolerances: See Table 9.

<p>| Table 8 |</p>
<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Amount Dissolved, 500-mg Tablet (%)</th>
<th>Amount Dissolved, 750-mg Tablet (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20–40</td>
<td>20–40</td>
</tr>
<tr>
<td>3</td>
<td>45–65</td>
<td>40–60</td>
</tr>
<tr>
<td>10</td>
<td>NLT 85</td>
<td>NLT 80</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of metformin hydrochloride (C₆H₁₁N₇·HCl) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

Test 8: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 8.
Medium: Prepare as directed in Test 1; 1000 mL.
Apparatus 1: 100 rpm for Tablets labeled to contain 750 mg
Apparatus 2: 100 rpm, with sinker, for Tablets labeled to contain 500 mg
Times: 1, 2, 6, and 10 h
Detector: UV 232 nm
Standard solution: USP Metformin Hydrochloride RS in Medium
Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-μm pore size. Dilute, if necessary, with Medium to a concentration similar to that of the Standard solution.
Analysis: Calculate the percentage of the labeled amount of metformin hydrochloride (C₆H₁₁N₇·HCl) released at each time point:

Result = \left[\left(\frac{A_7}{A_6}\right) \times C_1 \times \left(V - V_j\right) + \left(C_{60} \times V_j\right) + \left(C_{180} \times V_j\right) + \left(C_{600} \times V_j\right) \times 100\right]/L

A_7 = \text{absorbance of the Sample solution}
A_6 = \text{absorbance of the Standard solution}
C_1 = \text{concentration of the Standard solution (mg/mL)}
V = \text{initial volume of Medium in the vessel (mL)}
V_j = \text{volume withdrawn from the vessel for previous samplings (mL)}
C_{60} = \text{concentration of metformin hydrochloride in Medium determined at 1 h (mg/mL)}
C_{180} = \text{concentration of metformin hydrochloride in Medium determined at 3 h (mg/mL)}
C_{600} = \text{concentration of metformin hydrochloride in Medium determined at 10 h (mg/mL)}
L = \text{label claim (mg/Tablet)}

Tolerances: See Table 9.

<p>| Table 9 |</p>
<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Amount Dissolved, 500-mg Tablet (%)</th>
<th>Amount Dissolved, 750-mg Tablet (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20–40</td>
<td>20–40</td>
</tr>
<tr>
<td>2</td>
<td>30–50</td>
<td>35–55</td>
</tr>
<tr>
<td>6</td>
<td>65–85</td>
<td>75–95</td>
</tr>
<tr>
<td>10</td>
<td>NLT 85</td>
<td>NLT 85</td>
</tr>
</tbody>
</table>

© The United States Pharmacopeial Convention All Rights Reserved.
The percentages of the labeled amount of metformin hydrochloride \((C_6H_{14}N_2 \cdot HCl)\) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

Test 9: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 9.

Medium: 0.05 M phosphate buffer, pH 6.8; 1000 mL

Apparatus 1: 100 rpm, for Tablets labeled to contain 750 mg

Apparatus 2: 100 rpm, for Tablets labeled to contain 500 mg

Times: 1, 5, 12, and 20 h for Tablets to contain 500 mg; and 1, 4, 10, and 24 h for Tablets labeled to contain 750 mg

Standard solution: 0.5 mg/mL of USP Metformin Hydrochloride RS in Medium

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

Detector: UV 232 nm

Path length: 0.01 cm, flow cell

Blank: Medium

Analysis: Calculate the percentage of the labeled amount of metformin hydrochloride \((C_6H_{14}N_2 \cdot HCl)\) released at each time point:

\[
\text{Result} = \left(\frac{A_i}{A_0} \right) \times \left(C_i \times \frac{V - V_1}{V} + (C_i \times V_1) + (C_i \times V_2) + (C_i \times V_3) + (C_i \times V_4) \right)
\times 100 \%
\]

- \(A_i\) = absorbance of the Sample solution
- \(A_0\) = absorbance of the Standard solution
- \(C_i\) = concentration of the Standard solution at each time point (mg/mL)
- \(V\) = initial volume of Medium in the vessel (mL)
- \(V_1\) = volume withdrawn from the vessel for previous samplings (mL)
- \(C_1\) = concentration of metformin hydrochloride in Medium determined at the first time point (mg/mL)
- \(C_2\) = concentration of metformin hydrochloride in Medium determined at the second time point (mg/mL)
- \(C_3\) = concentration of metformin hydrochloride in Medium determined at the third time point (mg/mL)
- \(C_4\) = concentration of metformin hydrochloride in Medium determined at the fourth time point (mg/mL)
- \(L\) = label claim (mg/Tablet)

Tolerances: See Tables 10 and 11.

Table 10. For Tablets Labeled to Contain 500 mg

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Amount Dissolved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20–40</td>
</tr>
<tr>
<td>5</td>
<td>45–65</td>
</tr>
<tr>
<td>12</td>
<td>70–90</td>
</tr>
<tr>
<td>20</td>
<td>NLT 85</td>
</tr>
</tbody>
</table>

Table 11. For Tablets Labeled to Contain 750 mg

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Amount Dissolved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20–45</td>
</tr>
<tr>
<td>4</td>
<td>45–70</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of metformin hydrochloride \((C_6H_{14}N_2 \cdot HCl)\) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

Test 10: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 10.

Medium: 0.05 M phosphate buffer (prepared by dissolving 6.8 g of monobasic potassium phosphate in 250 mL of water, adding 77 mL of 0.2 N sodium hydroxide and 500 mL of water, adjusting with 2 N sodium hydroxide or 2 N hydrochloric acid to pH 6.8, and diluting with water to 1000 mL)

Apparatus 1: 100 rpm for Tablets labeled to contain 750 mg

Apparatus 2: 100 rpm for Tablets labeled to contain 500 mg

Times: 1, 3, and 10 h

Standard solution: \((L/100,000)\) mg/mL of USP Metformin Hydrochloride RS in Medium, where \(L\) is the label claim, in mg/Tablet. This solution is stable for 72 h at room temperature.

Sample solution: At the times specified, withdraw 10 mL of the solution under test and replace with 10 mL of Medium previously equilibrated at 37.0 ± 0.5°C. Centrifuge at 2500 rpm for 10 min. Dilute a portion of the supernatant with Medium to obtain a theoretical concentration of \((L/100,000)\) mg/mL, where \(L\) is the label claim, in mg/Tablet.

Detector: UV 233 nm

Path length: 1 cm

Blank: Medium

Analysis: Calculate the concentration (mg/mL) of metformin hydrochloride \((C)\) at each time point:

\[
C = \left(\frac{A_i}{A_0} \right) \times C_i
\]

- \(A_i\) = absorbance of the Sample solution
- \(A_0\) = absorbance of the Standard solution
- \(C_i\) = concentration of the Standard solution (mg/mL)

Calculate the cumulative percentage of the labeled amount of metformin hydrochloride \((C_6H_{14}N_2 \cdot HCl)\) dissolved \((Q_i)\) at each time point \((i)\):

At \(i = 1:\)

\[
Q_1 = (C_2 \times V/L) \times 100
\]

At \(i = 3:\)

\[
Q_3 = [C_3(V - V_3) + (C_3 \times V_3)] \times 100/L
\]

At \(i = 10:\)

\[
Q_{10} = [C_{10}(V - 2V) + (C_6 + C_7)V_3] \times 100/L
\]

- \(V\) = initial volume of Medium, 1000 mL
- \(V_3\) = sampling volume, 10 mL
- \(L\) = label claim (mg/Tablet)

Tolerances: See Table 12.

© The United States Pharmacopeial Convention All Rights Reserved.
The percentages of the labeled amount of metformin hydrochloride \((C_6H_11N_2 \cdot HCl)\) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

Test 11: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 11.

Medium: pH 6.8 phosphate buffer solution; 1000 mL

Apparatus 1: 100 rpm for Tablets labeled to contain 750 mg

Apparatus 2: 100 rpm for Tablets labeled to contain 500 mg

Times: 1, 3, and 10 h

Standard solution: 7.5 µg/mL of USP Metformin Hydrochloride RS in Medium

Sample solution: At the times specified, withdraw 10 mL of the solution under test, and pass it through a suitable filter of 0.45-µm pore size, discarding the first 3 mL of filtrate. Dilute 3.0 mL of the filtrate with Medium to 200 mL. For Tablets labeled to contain 750 mg, dilute 2.0 mL of the filtrate with Medium to 200 mL. Replace the volume of Medium taken with the same volume of Medium preheated at 37.0 ± 0.5°.

Detector: UV 232 nm
Path length: 1 cm
Blank: Medium

Analysis: Calculate the percentage of the labeled amount of metformin hydrochloride \((C_6H_11N_2 \cdot HCl)\) dissolved at each time point:

\[
Q_i = (A_i / A_0) \times (C_i / L) \times V \times D \times 100
\]

At 1 h:

\[
\text{Result} = Q_1
\]

At 3 h:

\[
\text{Result} = Q_i + ((Q_i \times 10) / V)
\]

At 10 h:

\[
\text{Result} = Q_{10} + (((Q_i \times 10) / V) + ((Q_i \times 10) / V))
\]

\[
A_i = \text{absorbance of the Sample solution} \\
A_0 = \text{absorbance of the Standard solution} \\
C_i = \text{concentration of the Standard solution (mg/mL)} \\
L = \text{label claim (mg/Tablet)} \\
V = \text{volume of Medium, 1000 mL} \\
D = \text{dilution factor of the Sample solution}
\]

Tolerances: See Table 13.

Table 13

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Amount Dissolved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25–45</td>
</tr>
<tr>
<td>3</td>
<td>50–70</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of metformin hydrochloride \((C_6H_11N_2 \cdot HCl)\) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

Test 12: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 12.

Medium: pH 6.8 phosphate buffer solution; 1000 mL

Apparatus 1: 100 rpm

Times: 1, 4, and 12 h

Standard stock solution: 0.2 mg/mL of USP Metformin Hydrochloride RS in Medium

Sample solution: At the times specified, withdraw 10 mL of the solution under test, and replace with 10 mL of Medium previously equilibrated at 37.0 ± 0.5°. Pass it through a suitable filter, discarding the first few mL of the filtrate.

For Tablets labeled to contain 500 mg: Dilute 2.0 mL of the filtrate with water to 100 mL.

For Tablets labeled to contain 1000 mg: Dilute 1.0 mL of the filtrate with water to 100 mL.

Detector: UV 232 nm
Blank: Dilute 1 mL of Medium with water to 100 mL.

Analysis: Calculate the concentration \((C_i)\), in mg/mL, of metformin hydrochloride \((C_6H_11N_2 \cdot HCl)\) in the sample withdrawn at each time point \((i)\):

\[
\text{Result}_1 = (A_i / A_0) \times C_i \times D
\]

\[
A_i = \text{absorbance of the Sample solution} \\
A_0 = \text{absorbance of the Standard solution} \\
C_i = \text{concentration of the Standard solution (mg/mL)} \\
D = \text{dilution factor of the Sample solution}
\]

Calculate the percentage of the labeled amount of metformin hydrochloride \((C_6H_11N_2 \cdot HCl)\) dissolved \((Q)\) at each time point \((i)\):

\[
\text{Result}_1 = C_i \times V \times (1/L) \times 100 \\
\text{Result}_2 = (C_i \times V) + (C_i \times V) \times (1/L) \times 100 \\
\text{Result}_3 = (C_i \times V) + (C_i \times V) \times (1/L) \times 100
\]

\[
C_i = \text{concentration of metformin hydrochloride in the portion of sample withdrawn at time point \(i\) (mg/mL)} \\
V = \text{initial volume of Medium, 1000 mL} \\
L = \text{label claim (mg/Tablet)} \\
V_i = \text{volume of the Sample solution withdrawn, 10 mL}
\]

Tolerances: See Table 14.

Table 14

<table>
<thead>
<tr>
<th>Time Point (i)</th>
<th>Time (h)</th>
<th>Amount Dissolved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>NMT 15</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>35–65</td>
</tr>
</tbody>
</table>
Table 14 (continued)

<table>
<thead>
<tr>
<th>Time Point (h)</th>
<th>Time (h)</th>
<th>Amount Dissolved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12</td>
<td>NLT 85</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of metformin hydrochloride \((C_{\text{H}_2\text{N}_2}\cdot \text{HCl})\) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

Test 13: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 13.

Medium: pH 6.8 phosphate buffer solution; 1000 mL

Apparatus 1: 100 rpm

Times: 1, 4, 6, and 12 h

Standard stock solution: 0.2 mg/mL of USP Metformin Hydrochloride RS prepared as follows. Transfer a suitable amount of USP Metformin Hydrochloride RS into an appropriate volumetric flask. Dissolve by adding Medium to fill 50% of the flask volume and dilute with Medium to volume.

Standard solution: 0.01 mg/mL of USP Metformin Hydrochloride RS from Standard stock solution in water

Sample stock solution: At the times specified, withdraw 10 mL of the solution under test, and replace with the same volume of Medium preheated at 37.0 ± 0.5°C. Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size, discard the first few mL, and use the filtrate.

Sample solution

For Tablets labeled to contain 500 mg: Dilute 2 mL of Sample stock solution with water to 100 mL.

For Tablets labeled to contain 1000 mg: Dilute 1 mL of Sample stock solution with water to 100 mL.

Instrumental conditions

(See Ultraviolet-Visible Spectroscopy (857).)

Mode: UV

Analytical wavelength: 232 nm

Blank

For Tablets labeled to contain 500 mg: Dilute 2 mL of Medium with water to 100 mL.

For Tablets labeled to contain 1000 mg: Dilute 1 mL of Medium with water to 100 mL.

System suitability

Sample: Standard solution

Suitability requirements

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution, Sample solution, and Blank

Calculate the concentration \((C_i)\) in mg/mL, of metformin hydrochloride \((C_{\text{H}_2\text{N}_2}\cdot \text{HCl})\) in the sample withdrawn from the vessel at each time point \((i)\):

\[
\text{Result}_i = \left(\frac{A_i}{A_s}\right) \times C_i \times D
\]

\(A_i\) = absorbance of the Sample solution

\(A_s\) = absorbance of the Standard solution

\(C_i\) = concentration of the Standard solution (mg/mL)

\(D\) = dilution factor of the Sample solution

The percentages of the labeled amount of metformin hydrochloride \((C_{\text{H}_2\text{N}_2}\cdot \text{HCl})\) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

*Test 15: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 15.

Medium: pH 6.8 phosphate buffer solution; 1000 mL

[Note—Degas Medium as appropriate.]

Apparatus 1: 100 rpm

Times: 1, 4, 6, and 12 h

Standard stock solution: \((L/1000)\) of USP Metformin Hydrochloride RS where \(L\) is the labeled quantity, in mg, of metformin hydrochloride in each Tablet in Medium. Sonication may be used to promote dissolution.

Standard solution: 0.01 mg/mL of USP Metformin Hydrochloride RS from Standard stock solution in water

Sample stock solution: At the times specified, withdraw a suitable volume of the solution under test, and replace with the same volume of Medium. Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size, discard the first few milliliters, and use the filtrate.

Sample solution

For Tablets labeled to contain 500 mg: Dilute 2 mL of Sample stock solution with water to 100 mL.

For Tablets labeled to contain 1000 mg: Dilute 2 mL of Sample stock solution with water to 200 mL.

Instrumental conditions

(See Ultraviolet-Visible Spectroscopy (857).)

Mode: UV

Analytical wavelength: 232 nm

Blank

For Tablets labeled to contain 500 mg: Dilute 2 mL of Medium with water to 100 mL.

For Tablets labeled to contain 1000 mg: Dilute 2 mL of Medium with water to 200 mL.

Analysis

Samples: Standard solution, Sample solution, and Blank

Calculate the concentration \((C_i)\) in mg/mL, of metformin hydrochloride \((C_{\text{H}_2\text{N}_2}\cdot \text{HCl})\) in the sample withdrawn from the vessel at each time point \((i)\):

\[
\text{Result}_i = \left(\frac{A_i}{A_s}\right) \times C_i \times D
\]

\(A_i\) = absorbance of the Sample solution

Result; \(= \left(\frac{C_i \times V_i}{C_j \times V_j} + \left(C_j + C_2 + C_3\right) \times V_j\right) \times (1/L) \times 100\)

\(C_i\) = concentration of metformin hydrochloride in the portion of sample withdrawn at the specified time point (mg/mL)

\(V_i\) = volume of Medium, 1000 mL

\(L\) = label claim (mg/Tablet)

\(V_j\) = volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)

Tolerances: See Table 15.

Table 15

<table>
<thead>
<tr>
<th>Time Point (h)</th>
<th>Time (h)</th>
<th>Amount Dissolved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>NMT 20</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>45–65</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>65–85</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>NLT 85</td>
</tr>
</tbody>
</table>

© The United States Pharmacopeial Convention All Rights Reserved.
\[A_s = \text{absorbance of the Standard solution} \]
\[C_s = \text{concentration of USP Metformin Hydrochloride RS in the Standard solution (mg/mL)} \]
\[D = \text{dilution factor for the Sample solution} \]

Calculate the percentage of the labeled amount of metformin hydrochloride \((C_4H_{11}N_5 \cdot HCl)\) dissolved at each time point \((i)\):

\[
\text{Result}_1 = C_1 \times V \times \left(\frac{1}{L}\right) \times 100
\]
\[
\text{Result}_2 = \left(\left(C_2 \times V\right) + \left(C_1 \times V_S\right)\right) \times \left(\frac{1}{L}\right) \times 100
\]
\[
\text{Result}_3 = \left(\left(C_3 \times V\right) + \left[\left(C_2 + C_1\right) \times V_S\right]\right) \times \left(\frac{1}{L}\right) \times 100
\]
\[
\text{Result}_4 = \left(\left(C_4 \times V\right) + \left[\left(C_3 + C_2 + C_1\right) \times V_S\right]\right) \times \left(\frac{1}{L}\right) \times 100
\]

\[C_i = \text{concentration of metformin hydrochloride in the portion of sample withdrawn at the specified time point (mg/mL)} \]
\[V = \text{volume of Medium, 1000 mL} \]
\[L = \text{label claim (mg/Tablet)} \]
\[V_S = \text{volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)} \]

Tolerances: See Table 16.

Table 16

<table>
<thead>
<tr>
<th>Time Point ((i))</th>
<th>Time ((h))</th>
<th>Amount Dissolved, 500-mg Tablet (%)</th>
<th>Amount Dissolved, 1000-mg Tablet (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>NMT:15</td>
<td>NMT:20</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>40-60</td>
<td>45-65</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>60-80</td>
<td>60-85</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>NLT:85</td>
<td>NLT:85</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of metformin hydrochloride \((C_4H_{11}N_5 \cdot HCl)\) dissolved at the times specified conform to *Dissolution* (711), *Acceptance Table 2* (TBD).

- **Uniformity of Dosage Units** (905): Meet the requirements

Impurities

Organic Impurities

Mobile phase, Sample solution, and Chromatographic system: Proceed as directed in the Assay.

Analysis: From the chromatogram of the Sample solution obtained in the Assay, calculate the percentage of each impurity in the portion of Tablets taken:

\[
\text{Result} = \left(\frac{r_U}{r_T}\right) \times 100
\]

\[r_U = \text{peak response for each impurity} \]
\[r_T = \text{sum of all the peak responses} \]

Acceptance criteria

- **Individual impurities:** NMT 0.1%
- **Total impurities:** NMT 0.6%

[Note—Disregard any peak less than 0.05%, and disregard any peak observed in the blank.]

Additional Requirements

- **Packaging and Storage:** Preserve in well-closed, light-resistant containers, and store at controlled room temperature.

- **Labeling:** When more than one dissolution test is given, the labeling states the Dissolution test used only if Test 1 is not used.

- **USP Reference Standards** (11):
 - USP Metformin Hydrochloride RS
 - USP Metformin Related Compound B RS
 - 1-Methylbiguanide hydrochloride. \(C_5H_9N_5 HC1\) 151.60
 - USP Metformin Related Compound C RS
 - \(N,N\)-Dimethyl-[1,3,5]triazine-2,4,6-triamine. \(C_5H_{10}N_6\) 154.17

© The United States Pharmacopeial Convention All Rights Reserved.

C208810-M871-CHM32015, rev. 00 20180928