In accordance with the Rules and Procedures of the 2015–2020 Council of Experts, the Chemical Medicines Monographs 5 Expert Committee has revised the Potassium Chloride Extended-Release Tablets monograph. The purpose for the revision is to add *Dissolution Test 2* to accommodate FDA-approved drug products with different tolerances than the existing dissolution test. *Labeling* information has been incorporated to support the inclusion of *Dissolution Test 2*.

The Potassium Chloride Extended-Release Tablets Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Ren-Hwa Yeh, Ph.D., Senior Scientific Liaison (301-998-6818 or rhy@usp.org).
Potassium Chloride Extended-Release Tablets

DEFINITION
Potassium Chloride Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of potassium chloride (KCl).

IDENTIFICATION
- **A. IDENTIFICATION TESTS—GENERAL** (191), Chemical Identification Tests, Potassium
- **B. IDENTIFICATION TESTS—GENERAL** (191), Chemical Identification Tests, Chloride

ASSAY

- **METHOD (See Atomic Absorption Spectroscopy (852).)**

Instrumental conditions
- Model: Atomic absorption spectrophotometry
- Analytical wavelength: Potassium emission line at 766.5 nm
- Lamp: Potassium hollow-cathode
- Flame: Air–acetylene
- Blank: Water

Analysis
- **Samples:** Standard solutions, Sample solution 1 or Sample solution 2, and Blank
- Plot the absorbances of the Standard solutions versus the concentration of potassium, in µg/mL, and draw the straight line best fitting the three plotted points. From the graph, determine the concentration of potassium in the Sample solution (µg/mL).
- Calculate the percentage of the labeled amount of potassium chloride (KCl) in each Tablet taken:

\[
\text{Result} = \left(\frac{C}{C_0} \right) \times \left(\frac{M_c}{A_c} \right) \times 100
\]

- C = concentration of potassium in the Sample solution as determined in this test (µg/mL)
- C₀ = nominal concentration of potassium chloride in the Sample solution (µg/mL)
- Mc = molecular weight of potassium chloride, 74.55
- Ac = atomic weight of potassium, 39.10

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

- **Dissolution (711)**
- **Test 1** (88 1-Sep-1988)

<table>
<thead>
<tr>
<th>Medium</th>
<th>900 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparatus 2</td>
<td>50 rpm</td>
</tr>
<tr>
<td>Time</td>
<td>2 h</td>
</tr>
</tbody>
</table>

Standard stock solution: 19.07 µg/mL of potassium chloride, previously dried at 105° for 2 h, in water. This solution contains 10 µg/mL of potassium chloride.

Standard preparation 1
- Transfer 10.0, 15.0, and 20.0 mL, respectively, of the Standard solution to a 100-mL volumetric flask, and dilute with water to volume.

Sample preparation 1
- Nominally 0.06 mg/mL of potassium chloride prepared as follows. Place NLT 20 Tablets in a suitable container with 400 mL of water, heat to boiling, and boil for 20 min. Allow to cool, transfer the solution to a 1000-mL volumetric flask, and dilute with water to volume. Filter and discard the first 20 mL of the filtrate. Transfer a measured volume of the subsequent filtrate, equivalent to 60 mg of potassium chloride, to a 1000-mL volumetric flask, and dilute with water to volume.

Sample preparation 2 (for formulations containing crystals coated with hydrophilic polymers)

Sample stock solution 2: Nominally 0.06 mg/mL of potassium chloride prepared as follows. Place NLT 20 Tablets in a 2000-mL volumetric flask. Add 1200 mL of a mixture of acetonitrile and water (1:1), and shake by mechanical means, or stir using a magnetic bar for 90 min. Dilute the mixture of acetonitrile and water (1:1) to volume. Allow to stand for 90 min. Pass through a filter of 0.2-µm pore size. Transfer a measured volume of the filtrate, and quantitatively dilute with water to obtain a solution with a concentration of 0.06 mg/mL.

Sample solution 2: Nominally 3 µg/mL of potassium chloride prepared as follows. Transfer an appropriate amount of the powder, equivalent to about 5–6 Tablets, to a suitable volumetric flask, add 10% of the final flask volume of acetone, and sonicate for 45 min with intermittent shaking. Add 80% of the final flask volume of water and sonicate for 45 min with intermittent shaking. Cool to room temperature and dilute with water to volume. Centrifuge a portion of the solution at 5000 rpm for 10 min. Transfer an appropriate amount of the supernatant to a 100-mL volumetric flask, add 2.0 mL of sodium chloride solution (1 in 5) and 1.0 mL of hydrochloric acid, and dilute with water to volume.

Performance tests

- **Change to read:**

<table>
<thead>
<tr>
<th>Medium</th>
<th>900 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparatus 2</td>
<td>50 rpm</td>
</tr>
<tr>
<td>Time</td>
<td>2 h</td>
</tr>
</tbody>
</table>

Standard stock solution: 19.07 µg/mL of potassium chloride, previously dried at 105° for 2 h, in water. This solution contains 10 µg/mL of potassium chloride.

Sample preparation
- Sample solution 1: Nominally 0.06 mg/mL of potassium chloride prepared as follows. Place NLT 20 Tablets in a suitable container with 400 mL of water, heat to boiling, and boil for 20 min. Allow to cool, transfer the solution to a 1000-mL volumetric flask, and dilute with water to volume. Filter and discard the first 20 mL of the filtrate. Transfer a measured volume of the subsequent filtrate, equivalent to 60 mg of potassium chloride, to a 1000-mL volumetric flask, and dilute with water to volume.

Sample preparation 2 (for formulations containing crystals coated with hydrophilic polymers)

Sample stock solution 2: Nominally 0.06 mg/mL of potassium chloride prepared as follows. Place NLT 20 Tablets in a 2000-mL volumetric flask. Add 1200 mL of a mixture of acetonitrile and water (1:1), and shake by mechanical means, or stir using a magnetic bar for 90 min. Dilute the mixture of acetonitrile and water (1:1) to volume. Allow to stand for 90 min. Pass through a filter of 0.2-µm pore size. Transfer a measured volume of the filtrate, and quantitatively dilute with water to obtain a solution with a concentration of 0.06 mg/mL.

Sample solution 2: Nominally 3 µg/mL of potassium chloride prepared as follows. Transfer an appropriate amount of the powder, equivalent to about 5–6 Tablets, to a suitable volumetric flask, add 10% of the final flask volume of acetone, and sonicate for 45 min with intermittent shaking. Add 80% of the final flask volume of water and sonicate for 45 min with intermittent shaking. Cool to room temperature and dilute with water to volume. Centrifuge a portion of the solution at 5000 rpm for 10 min. Transfer an appropriate amount of the supernatant to a 100-mL volumetric flask, add 2.0 mL of Sodium chloride solution (1 in 5) and 1.0 mL of Hydrochloric acid, and dilute with water to volume.

Acceptance criteria: 90.0%–110.0%
2 Potassium

- **Sample stock solution**: Filter the solution under test, and dilute with Medium to obtain a solution containing nominally 60 µg/mL of potassium chloride.
- **Sample solution**: Transfer 5.0 mL of the Sample stock solution to a 100-mL volumetric flask. Add 2.0 mL of sodium chloride solution (1 in 5) and 1.0 mL of hydrochloric acid, and dilute with water to volume.

Instrumental conditions
(See Atomic Absorption Spectroscopy (852).)

Mode: Atomic absorption spectrophotometry

Analytical wavelength: Potassium emission line at 766.3 nm

Lamp: Potassium hollow-cathode

Flame: Air–acetylene

Blank: Water

Analysis

Samples: Standard solutions, Sample solution, and Blank

Plot the absorbances of the Standard solutions versus the concentration of potassium, in µg/mL, and draw the straight line best fitting the three plotted points. From the graph, determine the concentration of potassium in the Sample solution (µg/mL).

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved:

\[
\text{Result} = \left[\frac{C \times D \times (V/L)}{M_r} \right] \times \frac{A_i}{A_i} \times 100
\]

- **C** = concentration of potassium in the Sample solution as determined in this test (µg/mL)
- **D** = dilution factor of the Sample solution
- **V** = volume of Medium, 900 mL
- **L** = labeled amount of potassium chloride (µg/Tablet)
- **M_r** = molecular weight of potassium chloride, 74.55
- **A_i** = atomic weight of potassium, 39.10

Tolerances: NMT 35% (Q) of the labeled amount of potassium chloride (KCl) is dissolved in 2 h. The requirements are met if the quantities dissolved from the Tablets tested conform to Table 1 instead of the table shown in Dissolution (711).

<table>
<thead>
<tr>
<th>Stage</th>
<th>Number Tested</th>
<th>Acceptance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>6</td>
<td>Each unit is within the range Q ± 30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td>6</td>
<td>Average of 12 units (S_1 + S_2) is within the range between Q – 30% and Q + 35%, and no unit is outside the range Q ± 40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_3</td>
<td>12</td>
<td>Average of 24 units (S_1 + S_2 + S_3) is within the range between Q – 30% and Q + 35%, and NMT 2 units are outside the range Q ± 40%</td>
</tr>
</tbody>
</table>

Test 2: If the product complies with this procedure, the labeling indicates that it meets USP Dissolution Test 2.

Standard stock solution and Standard solutions: Prepare as directed in Test 1.

Medium: Water, 900 mL

Apparatus 2: 50 rpm

Times: 1, 2, 4, and 8 h

Sample stock solution: Transfer 4.0 mL of the solution under test into either a 50-mL volumetric flask (for 750-mg Tablet) or a 100-mL volumetric flask (for 1500-mg Tablet), dilute with water to volume, and filter.

Sample solution: Transfer 4.0 mL of the Sample stock solution to a 100-mL volumetric flask. Add 2.0 mL of sodium chloride solution (1 in 5) and 1.0 mL of hydrochloric acid, and dilute with water to volume.

Blank solution: To a 100-mL volumetric flask, add 2.0 mL of sodium chloride solution (1 in 5) and 1.0 mL of hydrochloric acid, and dilute with water to volume.

Instrumental conditions: Proceed as directed in Test 1, except do not use the Blank.

System suitability

Samples: Standard solutions

Suitability requirements

- **Linearity**: Correlation coefficient NLT 0.99
- **Relative standard deviation**: NMT 5.0% from 5 replicate analyses of the 1.5-µg/mL Standard solution

Analysis

Samples: 1.5-µg/mL Standard solution, Sample solution, and Blank solution

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved:

\[
\text{Result} = \left[\frac{(A_i/A_m) \times C_i \times D \times (V/L)}{(M_r/A_m)} \right] \times 100
\]

- **A_i** = absorbance of potassium in the Sample solution
- **A_m** = absorbance of potassium in the Standard solution
- **C_i** = concentration of potassium in the Standard solution (µg/mL)
- **D** = dilution factor of the Sample solution
- **V** = volume of Medium, 900 mL
- **L** = labeled amount of potassium chloride (µg/Tablet)
- **M_r** = molecular weight of potassium chloride, 74.55
- **A_m** = atomic weight of potassium, 39.10

Tolerances: See Table 2.

<table>
<thead>
<tr>
<th>Time Point (h)</th>
<th>Amount Dissolved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>750 mg/Tablet</td>
</tr>
<tr>
<td>1</td>
<td>10–30</td>
</tr>
<tr>
<td>2</td>
<td>30–50</td>
</tr>
<tr>
<td>3</td>
<td>60–80</td>
</tr>
<tr>
<td>4</td>
<td>NLT 80</td>
</tr>
</tbody>
</table>

The percentages of the labeled amount of potassium chloride (KCl), dissolved at the times specified, conform to Dissolution (711), Acceptance Table 2.

- **Uniformity of Dosage Units** (905); Meet the requirements

ADDITIONAL REQUIREMENTS

- **Packaging and Storage**: Preserve in tight containers, and store at a temperature not exceeding 30°.

Change to read:

- **Labeling**: The label states with which Sample preparation the product complies only if Sample preparation 1 is not used. *When more than one Dissolution test is given, the labeling states the Dissolution test used only if Test 1 is not used.*