

Potassium Citrate Extended-Release Tablets

Type of Posting	Revision Bulletin
Posting Date	27-May-2022
Official Date	1-Jun-2022
Expert Committee	Non-botanical Dietary Supplements

In accordance with the Rules and Procedures of the Council of Experts, the Non-botanical Dietary Supplements Expert Committee has revised the Potassium Citrate Extended-Release Tablets monograph. The purpose of this revision is to add *Dissolution Test 6* to accommodate FDA-approved drug products with different tolerances than the existing dissolution tests.

The Potassium Citrate Extended-Release Tablets Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Natalia Davydova, Principal Scientist (301-816-8328 or nd@usp.org).

Potassium Citrate Extended-Release Tablets

DEFINITION

Potassium Citrate Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of potassium citrate as monohydrate ($C_6H_5K_3O_7 \cdot H_2O$).

IDENTIFICATION

- A. <u>IDENTIFICATION TESTS—GENERAL (191)</u>, Chemical Identification Tests, Potassium Sample solution: Powder 5 Tablets, mix with 20 mL of <u>water</u>, and filter.
 Acceptance criteria: The filtrate meets the requirements.
- B. <u>IDENTIFICATION TESTS—GENERAL (191)</u>, Chemical Identification Tests, Citrate Sample: A portion of powdered Tablets containing about 50 mg of potassium citrate Acceptance criteria: Meet the requirements

ASSAY

• PROCEDURE

Buffer: 3.4 g/L of <u>monobasic potassium phosphate</u> in <u>water</u>. Adjust with <u>phosphoric acid</u> to a pH of 2.2. **Mobile phase:** *Buffer*

Standard solution: 0.4 mg/mL of USP Citric Acid RS in Mobile phase

- **Sample stock solution:** Weigh and finely powder NLT 20 Tablets. Transfer a portion of the powder, equivalent to 2000 mg of potassium citrate monohydrate, to a 250-mL volumetric flask, and add 150 mL of hot <u>water</u> (60°–70°). Sonicate for 20 min with occasional shaking. Allow to cool to room temperature, dilute with <u>water</u> to volume, and mix.
- **Sample solution:** Pass a portion of the *Sample stock solution* through a suitable filter of 0.45-µm pore size, discarding the first 5 mL of filtrate. Transfer 4 mL of the filtrate to a 50-mL volumetric flask, dilute with *Mobile phase* to volume, and mix. [Note—Reserve the remaining filtrate for use in the *Content of Potassium* test.]

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC Detector: UV 210 nm Column: 4.6-mm × 25-cm; 5-μm packing L1 Column temperature: 55° Flow rate: 1 mL/min Injection volume: 20 μL System suitability Sample: Standard solution Suitability requirements Relative standard deviation: NMT 2.0% Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of potassium citrate monohydrate ($C_6H_5K_3O_7 \cdot H_2O$)

in the portion of Tablets taken:

 $\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$

- r_{II} = citric acid peak area from the Sample solution
- $r_{\rm S}$ = citric acid peak area from the *Standard solution*
- $C_{\rm S}$ = concentration of <u>USP Citric Acid RS</u> in the *Standard solution* (mg/mL)
- C_U = nominal concentration of potassium citrate monohydrate in the Sample solution (mg/mL)
- M_{r1} = molecular weight of potassium citrate monohydrate, 324.41
- M_{r2} = molecular weight of citric acid (C₆H₈O₇), 192.13

Acceptance criteria: 90.0%-110.0%

OTHER COMPONENTS

• CONTENT OF POTASSIUM

- **Standard stock solution:** 19.07 μg/mL of potassium chloride, previously dried at 105° for 2 h, in <u>water</u>. This solution contains 10 μg/mL of potassium.
- **Standard solutions:** Transfer 10.0, 15.0, and 20.0 mL, respectively, to separate 100-mL volumetric flasks of the *Standard stock solution*. To each flask, add 2.0 mL of sodium chloride solution (200 mg/mL) and 1.0 mL of hydrochloric acid, and dilute with <u>water</u> to volume. The *Standard solutions* contain 1.0, 1.5, and 2.0 μg/mL of potassium, respectively.
- **Sample stock solution:** Dilute the clear filtrate, reserved from the *Assay*, with <u>water</u> to obtain a solution containing about 160 µg/mL of potassium citrate monohydrate.
- **Sample solution:** Transfer 3.0 mL of the *Sample stock solution* to a 100-mL volumetric flask.

Instrumental conditions

(See Atomic Absorption Spectroscopy (852).)

Mode: Atomic absorption spectrophotometry

Analytical wavelength: Potassium emission line at 766.5 nm

Lamp: Potassium hollow-cathode

Flame: Air-acetylene

Blank: <u>Water</u>

Analysis

Samples: Standard solutions, Sample solution, and Blank

Plot the absorbance of the *Standard solutions* versus the concentration of potassium, in μ g/mL, and draw the straight line best fitting the three plotted points. From the graph obtained, determine the concentration of potassium in the *Sample solution* (μ g/mL).

Calculate the percentage of potassium (K) in the portion of Tablets taken:

Result = $C \times 100/C_{U}$

- C = concentration of potassium in the Sample solution as determined in this test (µg/mL)
- C_U = concentration of potassium citrate anhydrous ($C_6H_5K_3O_7$) in the Sample solution calcu-

lated from the Assay value of potassium citrate monohydrate ($C_6H_5K_3O_7 \cdot H_2O$) (µg/mL)

Acceptance criteria: 36.4%-40.2%

PERFORMANCE TESTS

Change to read:

• **Dissolution** (711)

Test 1

Medium: Water; 900 mL

Apparatus 2: 50 rpm

Times: 0.5, 1, and 3 h; without Medium replacement

[NOTE—Withdraw the same volume at each time point.]

Standard stock solution and **Standard solutions:** Prepare as directed in the *Content of Potassium* test.

Sample solution: Filter the solution under test and dilute quantitatively with *Medium* to obtain a solution containing about 60 µg of potassium citrate per mL. Transfer 5.0 mL of this solution to a 100-mL volumetric flask, add 2.0 mL of <u>sodium chloride</u> solution (1 in 5) and 1.0 mL of <u>hydrochloric</u> <u>acid</u>. Dilute with <u>water</u> to volume, and mix.

Instrumental conditions

(See Atomic Absorption Spectroscopy (852).)

Mode: Atomic absorption spectrophotometry

Analytical wavelength: Potassium emission line at 766.5 nm

Lamp: Potassium hollow-cathode

Flame: Air-acetylene

Blank: Water

Analysis

Samples: Standard solutions, Sample solution, and Blank

Determine the concentration, in μ g/mL, of potassium in the *Sample solution* at each time point. Calculate the percentage of the labeled amount of potassium citrate monohydrate (C₆H₅K₃O₇·

 H_2O) dissolved at each time point:

At 0.5 h:

$$Result_1 = C_1 \times V \times R \times F \times 100/L$$

At 1 h:

$$\text{Result}_{2} = [C_{2} \times (V - V_{S}) + C_{1} \times V_{S}] \times R \times F \times 100/L$$

At 3 h:

 $\text{Result}_{3} = \{C_{3} \times [V - 2 \times V_{S}] + (C_{1} + C_{2}) \times V_{S}\} \times R \times F \times 100/L$

 $C = \text{as } C_1, C_2, C_3$, concentration of potassium in the *Sample solution* at each time point (µg/mL)

V = volume of *Medium*, 900 mL

- R = ratio of the molecular weight of potassium citrate monohydrate to 3 times the atomic weight of potassium, 2.765
- F = dilution factor of the Sample solution
- L = label claim (mg/Tablet)
- $V_{\rm S}$ = volume of sample withdrawn at each time point (mL)

Tolerances: The percentages of the labeled amount of potassium citrate monohydrate ($C_6H_5K_3O_7$.

H₂O) dissolved from the Tablets are NMT 45% (Q) in 30 min, NMT 60% (Q') in 1 h, and NLT 80%

(Q'') in 3 h. The requirements are met if the quantities dissolved from the Tablets tested conform to <u>Table 1</u> instead of the table shown under <u>Dissolution (711)</u>.

Table 1	L
---------	---

Stage	Number Tested	Acceptance Criteria
S ₁	6	Each unit is within the range between $Q \pm 10\%$ and $Q' \pm 10\%$, and is NLT $Q'' + 5\%$ at the stated times.
S ₂	6	Average of 12 units $(S_1 + S_2)$ is within the range between $Q \pm 10\%$ and $Q' \pm 10\%$ and is NLT Q'' ; no unit is outside the range between $Q \pm 15\%$ and $Q' \pm 15\%$, and no unit is less than $Q'' - 5\%$ at the stated times.
S ₃	12	Average of 24 units ($S_1 + S_2 + S_3$) is within the range between $Q \pm 10\%$ and $Q' \pm 10\%$ and is NLT Q'' ; NMT 1 unit is outside the range between $Q \pm 15\%$, NMT 1 unit is outside the range between $Q' \pm 15\%$, and NMT 1 unit is less than $Q'' - 5\%$ at the stated times.

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*. **Medium:** <u>Water</u>; 900 mL

Apparatus 2: 50 rpm

Times: 0.5, 1, 4, and 6 h. Replace the volume withdrawn with the equal volume of *Medium* preheated to $37 \pm 0.5^{\circ}$.

Buffer: 3.4 g/L of <u>monobasic potassium phosphate</u> in <u>water</u>. Adjust with <u>phosphoric acid</u> to a pH of 2.2.

Mobile phase: Buffer

Standard solution: Prepare a solution of <u>USP Citric Acid RS</u> in *Medium* as directed in <u>Table 2</u>.

Table 2

Tablet Strength (mg, as potassium citrate monohydrate)	Concentration of Citric Acid (mg/mL)
540	0.35
1080	0.70
1620	1.05

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size, discarding the first 5 mL of filtrate.

Chromatographic system (See <u>Chromatography (621), System Suitability</u>.) Mode: LC Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Column temperature: 55°

Flow rate: 1.0 mL/min

Injection volume: 20 µL

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Determine the concentration, in mg/mL, of potassium citrate monohydrate ($C_6H_5K_3O_7 \cdot H_2O$) in the sample withdrawn from the vessel at each time point:

Result =
$$(r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$$

 r_{II} = citric acid peak area from the Sample solution

 $r_{\rm S}$ = citric acid peak area from the *Standard solution*

 $C_{\rm S}$ = concentration of <u>USP Citric Acid RS</u> in the *Standard solution* (mg/mL)

 M_{r1} = molecular weight of potassium citrate monohydrate (C₆H₅K₃O₇·H₂O), 324.41

 M_{r2} = molecular weight of citric acid (C₆H₈O₇), 192.13

Calculate the percentage of the labeled amount of potassium citrate monohydrate ($C_6H_5K_3O_7$.

 H_2O) dissolved at each time point:

At 0.5 h:

$$\text{Result}_1 = C_1 \times V \times 100/L$$

At 1 h:

$$\text{Result}_{2} = (C_{2} \times V + C_{1} \times V_{S}) \times 100/L$$

At 4 h:

$$\text{Result}_3 = [C_3 \times V + (C_1 + C_2) \times V_S] \times 100/L$$

At 6 h:

$$\text{Result}_{4} = [C_{4} \times V + (C_{1} + C_{2} + C_{3}) \times V_{S}] \times 100/L$$

- $C = \text{as } C_1, C_2, C_3, C_4$, concentration of potassium citrate monohydrate in the portion of sample withdrawn at the specified time point (mg/mL)
- V = volume of *Medium*, 900 mL
- L = label claim (mg/Tablet)
- V_{S} = volume of sample withdrawn at each time point (mL)

Tolerances: The percentages of the labeled amount of potassium citrate monohydrate ($C_6H_5K_3O_7$.

 H_2O) dissolved at the times specified in <u>Table 3</u> conform to <u>Dissolution (711), Acceptance Table 2</u>.

Time (h)	Amount Dissolved (%)
0.5	25-50
1	40-65
4	NLT 70
6	NLT 80

Test 3: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*. **Medium:** Deaerated <u>water</u>; 900 mL

Apparatus 2: 50 rpm

[NOTE—Employ sinker if necessary to ensure that the Tablets do not float.]

Times: 0.5, 1, and 5 h; without Medium replacement

[Note—Withdraw the same volume at each time point. Pass a portion of the solution through a 0.45- μ m membrane filter, discarding the first 2 mL of the filtrate.]

- **Diluent:** Transfer 5 g of <u>sodium chloride</u> to a 100-mL volumetric flask, add 25 mL of <u>water</u> and 25 mL of <u>concentrated hydrochloric acid</u>, shake until dissolved, cool to room temperature, and dilute with <u>water</u> to volume.
- **Standard stock solution:** 19.07 μg/mL of <u>potassium chloride</u>, previously dried at 105° for 2 h, in <u>water</u>. This solution contains 10 μg/mL of potassium.
- **Standard solutions:** Transfer 5.0, 7.0, 10.0, 15.0, and 20.0 mL of *Standard stock solution* to separate 100-mL volumetric flasks. Add 4.0 mL of *Diluent* to each flask, dilute with <u>water</u> to volume, and mix well. The *Standard solutions* contain 0.5, 0.7, 1.0, 1.5, and 2.0 μg/mL of potassium, respectively.
- **Sample stock solution:** Filter the solution under test, and dilute quantitatively with <u>water</u> as stated in <u>Table 4</u>.

Time (h)	5 mEq Tablet Dilution	10 mEq Tablet Dilution	15 mEq Tablet Dilution
0.5	6.0 mL into 25 mL	6.0 mL into 50 mL	4.0 mL into 50 mL
1	5.0 mL into 25 mL	5.0 mL into 50 mL	3.0 mL into 50 mL
5	7.0 mL into 50 mL	7.0 mL into 100 mL	2.0 mL into 50 mL

Table 4

Sample solution: Transfer 5.0 mL of respective *Sample stock solution* into 100-mL volumetric flasks. Add 4.0 mL of *Diluent*, dilute with <u>water</u> to volume, and mix well.

Instrumental conditions

(See Atomic Absorption Spectroscopy (852).)

Mode: Atomic absorption spectrophotometry

Analytical wavelength: Potassium emission line at 766.5 nm

Lamp: Potassium hollow-cathode

Flame: Air-acetylene

Blank: Dilute Diluent with water (4:96)

Analysis

Samples: Standard solutions, Sample solution, and Blank

Determine the concentration, in μ g/mL, of potassium in the *Sample solution* at each time point. Calculate the percentage of the labeled amount of potassium dissolved at each time point: At 0.5 h:

$$\text{Result}_1 = C_1 \times D_1 \times V \times \frac{100}{L \times A}$$

At 1 h:

$$\text{Result}_2 = [C_2 \times D_2 \times (V - V_S) + C_1 \times D_1 \times V_S] \times 100/(L \times A)$$

At 5 h:

$$\text{Result}_3 = \{C_3 \times D_3 \times [V - 2 \times V_S] + (C_1 \times D_1 + C_2 \times D_2) \times V_S\} \times D \times 100/(L \times A)$$

- $C = \text{as } C_1, C_2, C_3$, concentration of potassium in the *Sample solution* at each time point (mg/mL)
- $D = as D_1, D_2, D_3$, dilution factor of the Sample solution at each point
- V = volume of *Medium*, 900 mL
- L = label claim (mEq/Tablet)
- A = atomic weight of potassium, 39.1
- $V_{\rm S}$ = volume of sample withdrawn at each time point (mL)

Tolerances: The percentages of the labeled amount of potassium dissolved at the times specified in <u>Table 5</u> conform to <u>Dissolution(711)</u>, <u>Acceptance Table 2</u>.

Table !	5
---------	---

Time (h)	Amount Dissolved (%)
0.5	30–50
1	45-65
5	NLT 85

Test 4: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 4*. **Medium:** <u>Water</u>; 900 mL

Apparatus 2: 50 rpm

[NOTE—Use tablet sinkers if necessary.]

Times: 0.5, 1, and 6 h. Replace the volume withdrawn with the equal volume of *Medium* preheated to $37 \pm 0.5^{\circ}$.

[Note—Withdraw the same volume at each time point. Pass a portion of the withdrawn solution through a $0.45-\mu m$ nylon filter, discarding the first 5 mL of filtrate.]

Buffer and Mobile phase: Prepare as directed in Test 2.

Standard solution: Prepare a solution of <u>USP Citric Acid RS</u> in *Medium* as directed in <u>Table 6</u>.

Та	bl	e 6	

Tablet Strength (mg, as potassium citrate monohydrate)	Concentration of Citric Acid (mg/mL)
1080	0.70
1620	1.05

Sample solution: Filtered portion of the solution under test

Chromatographic system and System suitability: Proceed as directed in Test 2.

Analysis

Samples: Standard solution and Sample solution

Determine the concentration, in mg/mL, of potassium citrate monohydrate ($C_6H_5K_3O_7 \cdot H_2O$) in the sample withdrawn from the vessel at each time point:

Result =
$$(r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$$

 r_U = peak area of citric acid from the Sample solution

 $r_{\rm S}$ = peak area of citric acid from the *Standard solution*

 $C_{\rm S}$ = concentration of <u>USP Citric Acid RS</u> in the *Standard solution* (mg/mL)

 M_{r1} = molecular weight of potassium citrate monohydrate (C₆H₅K₃O₇·H₂O), 324.41

 M_{r2} = molecular weight of citric acid (C₆H₈O₇), 192.13

Calculate the percentage of the labeled amount of potassium citrate monohydrate ($C_6H_5K_3O_7$.

 H_2O) dissolved at each time point:

At 0.5 h:

$$\text{Result}_1 = C_1 \times V \times (100/L)$$

At 1 h:

$$\text{Result}_2 = (C_2 \times V + C_1 \times V_S) \times (100/L)$$

At 6 h:

$$\text{Result}_3 = [C_3 \times V + (C_1 + C_2) \times V_S] \times 100/L$$

 C_i = concentration of potassium citrate monohydrate in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

 $V_{\rm S}$ = volume of sample withdrawn at each time point (mL)

Tolerances: The percentages of the labeled amount of potassium citrate monohydrate ($C_6H_5K_3O_7$ ·

 H_2O) dissolved at the times specified in <u>Table 7</u> conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Time (h)	Amount Dissolved (%)
0.5	30–50
1	45-65
6	NLT 80

Test 5: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 5*. **Medium:** <u>*Water*</u>; 900 mL

Apparatus 2: 50 rpm

Times: 0.5, 1, 2 and 6 h. Replace the volume withdrawn with an equal volume of *Medium* preheated to $37 \pm 0.5^{\circ}$.

[Note—Withdraw the same volume at each time point. Pass a portion of the withdrawn solution through a $0.45-\mu m$ nylon filter, discarding the first 5 mL of filtrate.]

Buffer and **Mobile phase:** Prepare as directed in *Test 2*.

Standard solution: Prepare a solution of <u>USP Citric Acid RS</u> in *Medium* as directed in <u>Table 8</u>.

Table 8

Tablet Strength (mg, as potassium citrate monohydrate)	Concentration of Citric Acid (mg/mL)	
1080	0.70	
1620	1.05	

Sample solution: Filtered portion of the solution under test

Chromatographic system and System suitability: Proceed as directed in Test 2.

Analysis

Samples: Standard solution and Sample solution

Determine the concentration, in mg/mL, of potassium citrate monohydrate ($C_6H_5K_3O_7 \cdot H_2O$) in the sample withdrawn from the vessel at each time point:

Result =
$$(r_U/r_S) \times C_S \times (M_{r_1}/M_{r_2})$$

 r_U = peak area of citric acid from the Sample solution

 r_{S} = peak area of citric acid from the *Standard solution*

 $C_{\rm S}$ = concentration of <u>USP Citric Acid RS</u> in the *Standard solution* (mg/mL)

 M_{r1} = molecular weight of potassium citrate monohydrate (C₆H₅K₃O₇·H₂O), 324.41

 M_{r2} = molecular weight of citric acid (C₆H₈O₇), 192.13

Calculate the percentage of the labeled amount of potassium citrate monohydrate ($C_6H_5K_3O_7$.

 H_2O) dissolved at each time point:

At 0.5 h:

$$\text{Result}_1 = C_1 \times V \times 100/L$$

At 1 h:

$$\text{Result}_2 = (C_2 \times V + C_1 \times V_S) \times 100/L$$

At 2 h:

Result₃ =
$$[C_3 \times V + (C_1 + C_2) \times V_5] \times 100/L$$

At 6 h:

$$\text{Result}_{4} = [C_{4} \times V + (C_{1} + C_{2} + C_{3}) \times V_{5}] \times 100/L$$

- C_i = concentration of potassium citrate monohydrate in the portion of sample withdrawn at the specified time point (mg/mL)
- V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

 $V_{\rm S}$ = volume of sample withdrawn at each time point (mL)

Tolerances:

See <u>Table 9</u>.

Table 9

Time (h)	Amount Dissolved (%)
0.5	26-46
1	40-60
2	55–75
6	NLT 80

The percentages of the labeled amount of potassium citrate monohydrate ($C_6H_5K_3O_7 \cdot H_2O$)

dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

Test 6: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 6.

Medium: Water; 900 mL

Apparatus 2: 50 rpm

Times: 0.5, 1, and 4 h—for strengths 540 and 1080 mg as potassium citrate monohydrate; 0.5, 1, and 6 h—for strength 1620 mg as potassium citrate monohydrate. Replace the volume withdrawn with an equal volume of *Medium* preheated to $37 \pm 0.5^{\circ}$.

[Note—Withdraw the same volume at each time point. Pass a portion of the withdrawn solution through a suitable $0.45-\mu m$ filter, discarding the first 5 mL of filtrate.]

Buffer, Mobile phase, Standard solution, Chromatographic system, and System

suitability: Proceed as directed in Test 2.

Sample solution: Filtered portion of the solution under test

Analysis

Samples: Standard solution and Sample solution

Determine the concentration, in mg/mL, of potassium citrate monohydrate ($C_6H_5K_3O_7 \cdot H_2O$) in the sample withdrawn from the vessel at each time point:

$$\text{Result} = (r_{U}/r_{S}) \times C_{S} \times (M_{r1}/M_{r2})$$

r_U = peak area of citric acid from the Sample solution

r_s = peak area of citric acid from the Standard solution

 $C_{\rm S}$ = concentration of <u>USP Citric Acid RS</u> in the *Standard solution* (mg/mL)

 M_{r1} = molecular weight of potassium citrate monohydrate (C₆H₅K₃O₇·H₂O), 324.41

 M_{r2} = molecular weight of citric acid (C₆H₈O₇), 192.13

Calculate the percentage of the labeled amount of potassium citrate monohydrate $(C_6H_5K_3O_7 \cdot$

H₂O) dissolved at each time point:

At 0.5 h:

$$\text{Result}_1 = C_1 \times V \times 100/L$$

At 1 h:

$$\text{Result}_2 = (C_2 \times V + C_1 \times V_S) \times 100/L$$

At 4 h or 6 h:

$$\text{Result}_{3} = [C_{3} \times V + (C_{1} + C_{2}) \times V_{5}] \times 100/L$$

C_i = concentration of potassium citrate monohydrate in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

V_S = volume of sample withdrawn at each time point (mL)

Tolerances: See <u>Table 10</u> and <u>Table 11</u>.

Table 10. For	[·] Tablets	Labeled	to Contain	540 mg/Tablet
---------------	----------------------	---------	------------	---------------

Time (h)	Amount Dissolved (%)
0.5	25-45
1	40-60
4	NLT 80

Table 11. For Tablets Labeled to Contain 1080 and 1620 mg/Tablet

Time (h)	Amount Dissolved (%)
0.5	25-45
1	40–60
6	NLT 80

The percentages of the labeled amount of potassium citrate monohydrate $(C_6H_5K_3O_7 \cdot H_2O)$ dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>. (RB 1-Jun-2022)

• **UNIFORMITY OF DOSAGE UNITS** (905): Meet the requirements

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers.
- **LABELING:** The label states the amount of potassium citrate as monohydrate $(C_6H_5K_3O_7 \cdot H_2O)$ in mEq and in g/Tablet. The label indicates the *Dissolution* test with which the product complies.
- USP REFERENCE STANDARDS (11)

USP Citric Acid RS

Page Information:

Not Applicable

Current DocID:

© 2022 The United States Pharmacopeial Convention All Rights Reserved.