

Nicardipine Hydrochloride Injection

Type of Posting Revision Bulletin
Posting Date 19-Sep-2023
Official Date 20-Sep-2023
Expert Committee Small Molecules 2

In accordance with the Rules and Procedures of the Council of Experts, the Small Molecules 2 Expert Committee has revised the Nicardipine Hydrochloride Injection monograph. The purpose of this revision is to widen the *pH* upper limit from 3.0–3.9 to 3.0–4.2, to remove the sorbitol requirement in the *Definition*, and to also add "If present" to the *Content of Sorbitol* test to allow flexibility and to accommodate FDA-approved drug products with different formulations using different excipients. In addition, based on comments received, the acceptance criteria for sorbitol are deleted from the *Definition*.

The Nicardipine Hydrochloride Injection monograph Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact V. Durga Prasad, Senior Scientist II (+91 40 4448 8723 or durgaprasad.v@usp.org).

Official: September 20, 2023

Nicardipine Hydrochloride Injection

Change to read:

DEFINITION

Nicardipine Hydrochloride Injection is a sterile solution of Nicardipine Hydrochloride. It contains NLT 90.0% and NMT 110.0% of the labeled amount of nicardipine hydrochloride $(C_{26}H_{29}N_3O_6 \cdot HCI)$. (RB 20-Sep-2023)

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.
- **B.** The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY

PROCEDURE

Buffer: 1.36 g/L of monobasic potassium phosphate in water

Mobile phase: Methanol and Buffer (80:20)

Diluent: Acetonitrile and Buffer (50:50)

Standard solution: 0.1 mg/mL of <u>USP Nicardipine Hydrochloride RS</u> in *Diluent*. Sonication may be used to aid in dissolution. Pass through a suitable filter of 0.45-µm pore size. Discard the first 2–3 mL of the filtrate.

Sample solution: Nominally 0.1 mg/mL of nicardipine hydrochloride in *Diluent* from a suitable volume of Injection. Pass through a suitable filter of 0.45-µm pore size. Discard the first 2–3 mL of filtrate. [Note—The *Sample solution* is stable for about 26 h.]

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm. For *Identification B*, use a diode array detector in the range of 200–400 nm.

Column: 4.6-mm \times 25-cm; 5- μ m packing <u>L1</u>

Column temperature: 40°

Flow rate: 1 mL/min Injection volume: 20 μL

Run time: NLT 2 times the retention time of nicardipine

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of nicardipine hydrochloride ($C_{26}H_{29}N_3O_6 \cdot HCI$) in the portion of Injection taken:

Result =
$$(r_{IJ}/r_S) \times (C_S/C_{IJ}) \times 100$$

 r_{ij} = peak response of nicardipine from the Sample solution

 $r_{\rm S}$ = peak response of nicardipine from the *Standard solution*

 C_S = concentration of <u>USP Nicardipine Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 C_{II} = nominal concentration of nicardipine hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

IMPURITIES

• LIMIT OF N-BENZYL-N-METHYL-ETHANOLAMINE

Solution A: Dissolve 2.80 g of <u>sodium perchlorate monohydrate</u> in 1 L of <u>water</u>. Adjust with <u>perchloric</u> <u>acid</u> to a pH of 2.5.

Solution B: Acetonitrile and methanol (50:50)

Diluent: Acetonitrile and water (20:80)

Mobile phase: See <u>Table 1</u>.

Table 1

Time (min)	Solution A (%)	Solution B (%)	
0	95	5	
10	82	18	
12	20	80	
22	20	80	
24	95	5	
32	95	5	

Standard solution: 2.5 μg/mL of <u>USP N-Benzyl-N-methyl-ethanolamine RS</u> in *Diluent* prepared as follows. To a suitable amount of <u>USP N-Benzyl-N-methyl-ethanolamine RS</u>, add *Diluent* to 70% of the final volume. Sonicate to dissolve. Cool, and dilute with *Diluent* to volume. Pass the solution through a suitable filter of 0.45-μm pore size.

Sample solution: Nominally 0.5 mg/mL of nicardipine hydrochloride in *Diluent* from a suitable volume of Injection. Pass the solution through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See <u>Chromatography</u> (621), <u>System Suitability</u>.)

Mode: LC

Detector: UV 205 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing <u>L1</u>

Temperatures

Autosampler: 10°

Column: 30°

Flow rate: 1.5 mL/min
Injection volume: 50 µL

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 5.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of N-benzyl-N-methyl-ethanolamine in the portion of Injection taken:

Result =
$$(r_I/r_S) \times (C_S/C_{II}) \times 100$$

 r_{II} = peak response of N-benzyl-N-methyl-ethanolamine from the Sample solution

 $r_{\rm S}$ = peak response of N-benzyl-N-methyl-ethanolamine from the Standard solution

 C_S = concentration of <u>USP N-Benzyl-N-methyl-ethanolamine RS</u> in the *Standard solution* (mg/mL)

 C_{II} = nominal concentration of nicardipine hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: NMT 0.7%

• ORGANIC IMPURITIES

Solution A: 3.5 g/L of <u>sodium perchlorate monohydrate</u> in <u>water</u>. Add 1 mL/L of <u>triethylamine</u>, and adjust with <u>perchloric acid</u> to a pH of 2.0.

Solution B: Acetonitrile and methanol (70:30)

Mobile phase: See Table 2.

Table 2

Time (min)	Solution A (%)	Solution B (%)	
0	70	30	
15	70	30	
55	35	65	
60	35	65	
62	70	30	
70	70	30	

Standard solution: 0.02 mg/mL of <u>USP Nicardipine Hydrochloride RS</u> in <u>methanol</u> prepared as follows. To a suitable amount of <u>USP Nicardipine Hydrochloride RS</u> add <u>methanol</u> to 60% of the final volume.

Sonicate to dissolve. Cool, and dilute with $\underline{\text{methanol}}$ to volume. Pass the solution through a suitable filter of 0.45- μ m pore size.

Sensitivity solution: 0.002 mg/mL of <u>USP Nicardipine Hydrochloride RS</u> in <u>methanol</u> from *Standard solution*

Sample solution: Nominally 2 mg/mL of nicardipine hydrochloride in methanol from a suitable volume of Injection. Pass the solution through a suitable filter of 0.45-μm pore size. [Note—The *Sample solution* is stable for about 42 h at 10°.]

Chromatographic system

(See <u>Chromatography (621), System Suitability</u>.)

Mode: LC

Detector: UV 239 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing $\perp 1$

Temperatures

Autosampler: 10°

Column: 50°

Flow rate: 1 mL/min

Injection volume: 10 µL

System suitability

Samples: Standard solution and Sensitivity solution

Suitability requirements

Tailing factor: NMT 2.0, Standard solution

Relative standard deviation: NMT 5.0%, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each specified impurity and any unspecified degradation product in the portion of Injection taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

 r_U = peak response of each specified impurity or any unspecified degradation product from the Sample solution

 $r_{\rm S}$ = peak response of nicardipine from the *Standard solution*

 C_S = concentration of <u>USP Nicardipine Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 C_{II} = nominal concentration of nicardipine hydrochloride in the Sample solution (mg/mL)

F = relative response factor (see <u>Table 3</u>)

Acceptance criteria: See <u>Table 3</u>.

Table 3

Name	Relative	Relative	Acceptance
	Retention	Response	Criteria,
	Time	Factor	NMT (%)
Nicardipine monoacid (nicardipine related compound A) ^a	0.72	1.00	0.2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Nicardipine pyridine analog (nicardipine related compound B) $^{\underline{b}}$	0.94	0.42	2.5
Nicardipine	1.00	1.00	_
Any unspecified degradation product	_	_	0.2
Total impurities ^c	_	_	3.5

 $[\]stackrel{a}{=} 5\text{-}(\text{Methoxycarbonyl})\text{-}2,6\text{-}dimethyl\text{-}4\text{-}(3\text{-}nitrophenyl})\text{-}1,4\text{-}dihydropyridine\text{-}3\text{-}carboxylic acid.}$

OTHER COMPONENTS

Change to read:

• CONTENT OF SORBITOL (if present) (RB 20-Sep-2023)

Buffer: 1 g/L of tetrabutylammonium hydrogen sulfate in water

Mobile phase: Acetonitrile and Buffer (70:30)

Standard solution: 4.8 mg/mL of <u>USP Sorbitol RS</u> in *Mobile phase*. Pass the solution through a suitable filter of 0.45-µm pore size. Sonication may be necessary to aid in dissolution.

Sample solution: Nominally 4.8 mg/mL of sorbitol in *Mobile phase* from the contents of NLT 3 Injection vials. Pass the solution through a suitable filter of 0.45-μm pore size. [Note—Sample solution is stable for about 24 h.]

Chromatographic system

(See <u>Chromatography (621), System Suitability</u>.)

Mode: LC

Detector: Refractive index

Column: 4.6-mm \times 25-cm; 5- μ m packing <u>L8</u>

Temperatures
Column: 40°
Detector: 50°
Flow rate: 1 mL/min
Injection volume: 25 µL

Run time: NLT 2 times the retention time of sorbitol

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

^b 3-{2-[Benzyl(methyl)amino]ethyl} 5-methyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate.

^c Total impurities include the sum of all organic impurities and N-benzyl-N-methyl-ethanolamine.

Calculate the percentage of the labeled amount of sorbitol $(C_6H_{14}O_6)$ in the portion of Injection taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

 r_{II} = peak response of sorbitol from the Sample solution

 $r_{\rm S}$ = peak response of sorbitol from the *Standard solution*

 C_S = concentration of <u>USP Sorbitol RS</u> in the *Standard solution* (mg/mL)

 C_{II} = nominal concentration of sorbitol in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

SPECIFIC TESTS

- BACTERIAL ENDOTOXINS TEST (85): Meets the requirements
- **STERILITY TESTS** (71): Meets the requirements

Change to read:

- <u>PH (791)</u>: 3.0- [▲]4.2 (RB 20-Sep-2023)
- Particulate Matter in Injections (788): Meets the requirements for small-volume injections
- OTHER REQUIREMENTS: Meets the requirements for <u>Injections and Implanted Drug Products (1)</u>

ADDITIONAL REQUIREMENTS

- **Packaging and Storage:** Preserve in single-dose amber glass vials. Store at controlled room temperature.
- **LABELING:** Label it to indicate that it is to be diluted to the appropriate strength with a suitable intravenous fluid prior to administration.
- USP REFERENCE STANDARDS (11)

USP N-Benzyl-N-methyl-ethanolamine RS

2-[Benzyl(methyl)amino]ethanol.

USP Nicardipine Hydrochloride RS

USP Sorbitol RS

D-Glucitol.

$$C_6 H_{14} O_6$$
 182.17

Page Information:

Not Applicable

Current DocID:

© 2023 The United States Pharmacopeial Convention All Rights Reserved.