

Methylphenidate Hydrochloride Extended-Release Tablets

Type of Posting	Revision Bulletin	
Posting Date	26–Jul–2019	
Official Date	01–Aug–2019	
Expert Committee	Chemical Medicines Monographs 4	
Reason for Revision	Compliance	

In accordance with the Rules and Procedures of the 2015–2020 Council of Experts, the Chemical Medicines Monographs 4 Expert Committee has revised the Methylphenidate Hydrochloride Extended-Release Tablets monograph. The purpose for the revision is to add *Dissolution Test 9* to accommodate FDA-approved drug products with different tolerances than the existing dissolution tests.

• *Dissolution Test* 9 was validated using a Waters Symmetry C18 brand of L1 column. The typical retention time for methylphenidate is about 4.5 min.

The revision also necessitates a change in the table numbering in the test for Organic Impurities.

The Methylphenidate Hydrochloride Extended-Release Tablets Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Mary P. Koleck, Senior Scientific Liaison (301-230-7420 or <u>mpk@usp.org</u>).

Methylphenidate Hydrochloride **Extended-Release Tablets**

DEFINITION

Methylphenidate Hydrochloride Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of methylphenidate hydrochloride (C14H19NO2 · HCI).

IDENTIFICATION

• A. INFRARED ABSORPTION

- Sample: Place a portion of powdered Tablets, equivalent to 100 mg of methylphenidate hydrochloride, in a 100mL beaker. Add 20 mL of chloroform, stir for 5 min, and filter, collecting the filtrate. Evaporate the filtrate to about 5 mL. Add ethyl ether slowly, with stirring, until crystals form. Filter the crystals, wash with ethyl ether, and dry at 80° for 30 min.
- Acceptance criteria: The IR absorption spectrum of a mineral oil dispersion of the crystals so obtained exhibits maxima only at the same wavelengths as those of a similar preparation of USP Methylphenidate Hydrochloride RS.
- B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

Change to read:

PROCEDURE

- Mobile phase: Dissolve 2 g of octanesulfonic acid sodium salt in 730 mL of water. Adjust with phosphoric acid to a pH of 2.7. Mix with 270 mL of acetonitrile.
- Solution A: Acidified water; adjusted with phosphoric acid to a pH of 3
- Diluent A: Acetonitrile and Solution A (25:75)
- Diluent B: Acetonitrile and methanol (50:50)
- System suitability solution: 80 µg/mL of USP Methylphenidate Hydrochloride RS, 1 µg/mL of methylphenidate hydrochloride erythro isomer from USP Methylphenidate Hydrochloride Erythro Isomer Solution RS, and 2 µg/mL of USP Methylphenidate Related Compound A RS in Diluent A
- Standard solution: 0.1 mg/mL of USP Methylphenidate Hydrochloride RS in Diluent A
- Sample stock solution: Nominally 1 mg/mL of methylphenidate hydrochloride prepared as follows. Dissolve NLT 10 Tablets in a suitable volumetric flask with 20% of the total flask volume of Diluent B. [NOTE—Alternatively, a portion of powder from NLT 10 Tablets may be transferred to a suitable volumetric flask and suspended in 20% of the total flask volume of Diluent B.] Stir for 4 h. Dilute with Solution A to volume.
- Sample solution: Nominally 0.1 mg/mL of methylphenidate hydrochloride in Solution A from the Sample stock solution. [NOTE—Centrifuge before chromatographic analysis.]
- Chromatographic system
- (See Chromatography (621), System Suitability.) Mode: LC
- Detector: UV 210 nm
- Column: 3.9-mm × 15-cm; 5-µm packing L1
- Column temperature: 30° Flow rate: 1 mL/min
- Injection volume: 25 µL
- Run time: 2 times the retention time of methylphenidate

System suitability

- Samples: System suitability solution and Standard solution [NOTE—See Table ▲9_{▲ (RB 1-Aug-2019)} for relative retention times.]
- Suitability requirements
- Resolution: NLT 4.0 between methylphenidate related compound A and methylphenidate hydrochloride erythro isomer; NLT 6.0 between the methylphenidate and erythro isomer peaks, System suitability solution Tailing factor: NMT 2.0 for the methylphenidate peak, Standard solution
- Relative standard deviation: NMT 2.0% for the methylphenidate peak, Standard solution
- Analysis

rs

Samples: Standard solution and Sample solution Calculate the percentage of the labeled amount of methylphenidate hydrochloride (C14H19NO2 · HCl) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

- = peak response from the Sample solution r_U
 - = peak response from the Standard solution
- = concentration of USP Methylphenidate Cs Hydrochloride RS in the Standard solution (mq/mL)
- C_U = nominal concentration of methylphenidate hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

- **Dissolution** (711)
 - Test 1
 - Medium: Water; 500 mL
 - Apparatus 2: 50 rpm

 - **Times:** 1, 2, 3.5, 5, and 7 h **Buffer:** Dissolve 1.6 g of anhydrous sodium acetate in 900 mL of water. Adjust with acetic acid to a pH of 4.0 and dilute with water to 1000 mL.
 - Mobile phase: Methanol, acetonitrile, and Buffer (40:30:30)
 - Internal standard solution: 0.4 mg/mL of phenylephrine hydrochloride in Mobile phase
 - Standard stock solution: (1.5 × [L/500]) mg/mL of USP Methylphenidate Hydrochloride RS in Mobile phase where L is the label claim of methylphenidate hydrochloride in mg/Tablet
 - Standard solution: Transfer 10.0 mL of the Standard stock solution to a glass-stoppered, 25-mL conical flask, add 5.0 mL of the Internal standard solution, and mix.
 - Sample stock solution: Use portions of the solution under test passed through a suitable filter of 0.45-µm pore size. Do not use glass fiber filters.
 - Sample solution: Transfer 10.0 mL of the Sample stock solution to a glass-stoppered, 25-mL conical flask, add 5.0 mL of the Internal standard solution, and mix.
 - Chromatographic system (See Chromatography (621), System Suitability.) Mode: LC
 - Detector: UV 210 nm
 - Column: 4.6-mm × 25-cm; packing L10
 - Flow rate: 1.5 mL/min
 - Injection volume: 50 µL
 - System suitability Sample: Standard solution

[NOTE—The relative retention times for

phenylephrine hydrochloride and

methylphenidate hydrochloride are 0.8 and 1.0, respectively.]

- Suitability requirements
- **Resolution:** NLT 2.0 between the analyte and internal standard peaks
- **Relative standard deviation:** NMT 2.0% for the peak response ratios of the analyte to the internal standard **Analysis**

Samples: Standard solution and Sample solution
 Calculate the percentage of the labeled amount of methylphenidate hydrochloride (C₁₄H₁₉NO₂ · HCl) dissolved by using the procedure in the Assay, making any necessary volumetric adjustments.
 Tolerances: See Table 1.

Table 1

Time (h)	Amount Dissolved (%)
1	25–45
2	40–65
3.5	55–80
5	70–90
7	NLT 80

The percentages of the labeled amount of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCI$) dissolved at the times specified conform to *Dissolution* $\langle 711 \rangle$, Acceptance Table 2.

For products labeled for dosing every 24 h

- **Test 2:** If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*. **Medium:** Acidified water; adjusted with phosphoric acid to a pH of 3: 50 mL at $37 \pm 0.5^{\circ}$
 - acid to a pH of 3; 50 mL at $37 \pm 0.5^{\circ}$ **Apparatus 7:** 30 cycles/min; 2–3 cm amplitude. Follow *Drug Release* (724), *General Drug Release Standards*, *Apparatus 7, Sample preparation A* using a metal spring sample holder (*Drug Release* (724), *Figure 5d*). Place one Tablet in the holder with the Tablet orifice facing down, and cover the top of the holder with ParafilmTM. At the end of each specified test interval, the systems are transferred to the next row of new test tubes containing 50 mL of fresh *Medium*.

Times: 1-h intervals for a duration of 10 h

Calculate the percentage of the labeled amount of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCI$) dissolved by using the following method.

Solution A: Dissolve 2.0 g of sodium 1-octanesulfonate in 700 mL of water, mix well, and adjust with phosphoric acid to a pH of 3.0.

Mobile phase: Acetonitrile and *Solution A* (30:70) **Diluent:** Acetonitrile and *Medium* (25:75)

- Standard stock solution: 0.3 mg/mL of USP Methylphenidate Hydrochloride RS in *Diluent*
- **Standard solutions:** Prepare at least six solutions by making serial dilutions of the *Standard stock solution* in *Diluent* to bracket the expected drug concentration range.

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC Detector: UV 220 nm Column: 3.2-mm × 5-cm; 5-µm packing L1 Column temperature: 30°

Flow rate: 1 mL/min

Injection volume: 25 µL

- System suitability
- Sample: Middle range concentration of the Standard solutions
- Suitability requirements
- Tailing factor: NMT 2
- **Relative standard deviation:** NMT 2% for the peak response of the analyte; NMT 2% for the retention time of the analyte

Analysis

- Samples: Standard solutions and the solution under test
- Construct a calibration curve by plotting the peak response versus the concentration of the *Standard solutions*. Determine the amount of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCI$) in each interval by linear regression analysis of the standard curve.

Tolerances: See Table 2.

Т	ab	le	2

Time (h)	Amount Dissolved (%)	
1	12–32	
4	40–60	
10	NLT 85	
3–6 (avg)	9–15 (/h)	

The percentages of the labeled amount of

methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCl$) dissolved at the times specified conform to *Dissolution* (711), *Acceptance Table 2*.

Calculate the average percentage released from 3–6 h:

Result = (Y - X)/3

Y = cumulative drug released from 0–6 h

X =cumulative drug released from 0–3 h

For products labeled for dosing every 24 h

Test 3: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 3. Medium: pH 6.8 phosphate buffer (6.8 g/L of monobasic potassium phosphate in water; adjusted with 2 N sodium hydroxide or 10% phosphoric acid to a pH of 6.80); 900 mL Apparatus 1: 100 rpm Times: 0.75, 4, and 10 h Buffer: pH 4.0 phosphate buffer (2.72 g/L of monobasic potassium phosphate in water; adjusted with 2 N sodium hydroxide or 10% phosphoric acid to a pH of 4.00) Mobile phase: Acetonitrile and Buffer (17.5: 82.5) Standard solution: 0.06 mg/mL of USP Methylphenidate Hydrochloride RS in 0.1 N hydrochloric acid Sample solution: Pass a portion of the solution under test through a suitable polytetrafluoroethylene (PTFE) filter of 0.45-µm pore size. Chromatographic system (See Chromatography (621), System Suitability.) Mode: LC Detector: UV 210 nm Column: 3.0-mm × 5-cm; 2.5-µm packing L1 Column temperature: 50° Flow rate: See Table 3.

Table 3

Tuble 9		
Time (min)	Flow Rate (mL/min)	
0.0	0.75	
2.5	0.75	
3.0	2.00	
6.0	2.00	
6.5	0.75	
7.0	0.75	

Injection volume: 10 µL

System suitability

Sample: Standard solution [NoTE—The relative retention times for methylphenidate related compound A, the erythro isomer, and methylphenidate are 0.47, 0.65, and 1.0, respectively.] Suitability requirements Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution Calculate the concentration (C_i) of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCl$) in the sample withdrawn from the vessel at each time point (*i*) shown in *Table 4*:

$$\text{Result}_i = (r_U/r_S) \times C_S$$

 r_{U} = sum of the peak responses of methylphenidate and methylphenidate related compound A from the *Sample solution*

r_s = peak response of methylphenidate from the *Standard solution*

C_s = concentration of USP Methylphenidate Hydrochloride RS in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCI$) dissolved at each time point (*i*) shown in *Table 4*:

 $Result_{1} = C_{1} \times V \times (1/L) \times 100$ $Result_{2} = \{ [C_{2} \times (V - V_{5})] + [C_{1} \times V_{5}] \} \times (1/L) \times 100$ $Result_{3} = (\{C_{3} \times [V - (2 \times V_{5})]\} + [(C_{2} + C_{1}) \times V_{5}]) \times (1/L)$ $\times 100$

C_i = concentration of methylphenidate hydrochloride in the portion of sample withdrawn at time point (*i*) (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

*V*_s = volume of the *Sample solution* withdrawn from the *Medium* (mL)

Tolerances: See Table 4.

Table 4		
Time Point (<i>i</i>)	Time (h)	Amount Dissolved (%)
1	0.75	12–30
2	4	55–80
3	10	NLT 80

The percentages of the labeled amount of methylphenidate hydrochloride (C₁₄H₁₉NO₂ · HCl) dissolved at the times specified conform to *Dissolution* (711), *Acceptance Table 2*.
 Test 4: If the product complies with this test, the labeling

indicates that it meets USP Dissolution Test 4.

Medium: 0.001 N hydrochloric acid; 500 mL

Apparatus 2: 50 rpm Times: 1, 2, 6, and 10 h

Mobile phase: Acetonitrile and water (20:80). For every L of *Mobile phase* add 1.0 mL of formic acid and 0.2 mL of trifluoroacetic acid.

Standard solution: 0.02 mg/mL of USP Methylphenidate Hydrochloride RS in *Mobile phase*

Sample solution: Pass a portion of the solution under test through a suitable PTFE filter of 0.45-µm pore size. Do not use glass fiber filters.

Chromatographic system (See Chromatography (621), System Suitability.) Mode: LC Detector: UV 220 nm Column: 3.0-mm × 15-cm; 3-µm packing L1

Column: 3.0-mm × 13-cm; 3-µm packing Column temperature: 40°

Flow rate: 0.75 mL/min

Injection volume: 10 µL

System suitability

Sample: Standard solution

Suitability requirements

Relative standard deviation: NMT 5.0%

Analysis Samples: Standard solution and Sample solution Calculate the concentration (C_i) of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCI$) in the sample withdrawn from the vessel at each time point (*i*) shown in *Table 5*:

$$\text{Result}_i = (r_U/r_S) \times C_S$$

- r_{U} = peak response of methylphenidate from the Sample solution
- r_s = peak response of methylphenidate from the Standard solution
- C_s = concentration of USP Methylphenidate Hydrochloride RS in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCI$) dissolved at each time point (*i*) shown in *Table 5*:

$$\begin{aligned} & \text{Result}_{1} = C_{1} \times V \times (1/L) \times 100 \\ & \text{Result}_{2} = \{ [C_{2} \times (V - V_{3})] + [C_{1} \times V_{5}] \} \times (1/L) \times 100 \\ & \text{Result}_{3} = (\{C_{3} \times [V - (2 \times V_{5})]\} + [(C_{2} + C_{1}) \times V_{5}]) \times (1/L) \times 100 \\ & \text{Result}_{4} = (\{C_{4} \times [V - (3 \times V_{5})]\} + [(C_{3} + C_{2} + C_{1}) \times V_{5}]) \times (1/L) \times 100 \end{aligned}$$

withdrawn at time point (i) (mg/mL)

- = volume of *Medium*, 500 mL
- L = label claim (mg/Tablet) V_s = volume of the *Sample* so
 - = volume of the *Sample solution* withdrawn from the *Medium* (mL)

Tolerances: See Table 5.

V

Table 5		
Time Point (<i>i</i>)	Time (h)	Amount Dissolved (%)
1	1	20–40
2	2	35–55
3	6	65–85
4	10	NLT 80

Table 5

The percentages of the labeled amount of

methylphenidate hydrochloride (C₁₄H₁₉NO₂·HCl)

dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

Test 5: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 5.

Medium: Water; 500 mL

Apparatus 2: 50 rpm

Times: 1, 2, 3.5, and 5 h **Buffer:** 1.6 g/L of anhydrous sodium acetate in water. Adjust with acetic acid to a pH of 4.0.

- Mobile phase: Methanol, acetonitrile, and Buffer (40:30:30)
- Standard stock solution: 0.2 mg/mL of USP Methylphenidate Hydrochloride RS in 0.1 N hydrochloric acid VS
- Standard solution: [L/500] mg/mL of USP Methylphenidate Hydrochloride RS in 0.1 N hydrochloric acid VS from *Standard stock solution*, where L is the label claim of methylphenidate hydrochloride in mg/Tablet
- Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size, then transfer the filtrate to a suitable container which already contains 10 µL of 2 N hydrochloric acid TS for every 1 mL of solution transferred.

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 5-µm packing L10 Flow rate: 1.5 mL/min

Injection volume: 50 µL

Run time: NLT 1.6 times the retention time of methylphenidate

System suitability

Sample: Standard solution

Suitability requirements

Relative standard deviation: NMT 2.0% Analysis

Samples: Standard solution and Sample solution Calculate the concentration (*C_i*) of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCI$) in the sample withdrawn from the vessel at each time point (i) shown in Table 6:

$$\text{Result}_i = (r_U/r_S) \times C_S$$

- = peak response of methylphenidate from the r_U Sample solution
- = peak response of methylphenidate from the rs Standard solution
- = concentration of USP Methylphenidate Cs Hydrochloride RS in the Standard solution (mq/mL)

Calculate the percentage of the labeled amount of methylphenidate hydrochloride (C14H19NO2 · HCl) dissolved at each time point (i) shown in Table 6:

$$\begin{aligned} & \text{Result}_{1} = C_{1} \times V \times (1/L) \times 100 \\ & \text{Result}_{2} = \{ [C_{2} \times (V - V_{3})] + [C_{1} \times V_{3}] \} \times (1/L) \times 100 \\ & \text{Result}_{3} = (\{C_{3} \times [V - (2 \times V_{3})]\} + [(C_{2} + C_{1}) \times V_{3}]) \times (1/L) \times 100 \\ & \text{Result}_{4} = (\{C_{4} \times [V - (3 \times V_{3})]\} + [(C_{3} + C_{2} + C_{1}) \times V_{3}]) \times (1/L) \times 100 \end{aligned}$$

 C_i = concentration of methylphenidate hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL)

= volume of *Medium*, 500 mL V

= label claim (mg/Tablet) L

 $V_{\rm S}$ = volume of the Sample solution withdrawn from the *Medium* (mL)

Tolerances: See Table 6.

Table 6 Amount Time Point Time Dissolved (i) (h) (%) 1 1 40-60 2 2 55-80 3 3.5 75–95 4 5 **NLT 80**

The percentages of the labeled amount of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCI$) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.

For products labeled for dosing every 24 h

- Test 6: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 6. Medium: Acidified water adjusted with phosphoric acid
- to a pH of 3; 50 mL Apparatus 7: 30 cycles/min; 2–3 cm amplitude. Follow Drug Release (724), General Drug Release Standards, Apparatus 7, Sample preparation A using a metal spring sample holder (Drug Release (724), Figure 5d). Place 1 Tablet in the holder with the Tablet orifice facing down, and cover the top of the holder with Parafilm™. At the end of each specified test interval, the systems are transferred to the next row of new vessels containing 50 mL of fresh Medium.
- Times: 1-h intervals for a duration of 10 h
- Calculate the percentage of the labeled amount of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCI$) dissolved by using the following method.
- Buffer: Dissolve 2.0 g of sodium 1-octanesulfonate in 700 mL of water, mix well, and adjust with phosphoric acid to a pH of 3.0.
- Mobile phase: Acetonitrile and Buffer (30:70)
- Diluent A: Acetonitrile and Medium (25:75)
- **Diluent B:** Acetonitrile and *Medium* (50:50)
- Standard stock solution: 0.3 mg/mL of USP
- Methylphenidate Hydrochloride RS in *Diluent A* **Standard solution:** (*L*/1000) mg/mL of USP Methylphenidate Hydrochloride RS in Diluent A from the Standard stock solution, where L is the label claim of methylphenidate hydrochloride in mg/Tablet Sample solutions: Following the dissolution, transfer the contents of each vessel to a separate 100-mL

volumetric flask. Rinse each vessel three times, using

about 15 mL of Diluent B each time, and transfer the rinsates to the volumetric flask. Allow to cool and dilute with Diluent B to volume. Centrifuge and use the supernatant.

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC Detector: UV 220 nm Column: 3.2-mm × 5-cm; 5-µm packing L1 Column temperature: 30° Flow rate: 1 mL/min Injection volume: 25 µL

Run time: NLT 2 times the retention time of methylphenidate

System suitability

Sample: Standard solution

- Suitability requirements
- Tailing factor: NMT 2 Relative standard deviation: NMT 2.0% for the peak response of methylphenidate; NMT 2% for the retention time of methylphenidate

Analysis

Samples: Standard solution and Sample solutions Calculate the concentration (C) of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCl$) in the sample withdrawn from the vessel at each time point (i) shown in Table 7:

$$\text{Result}_i = (r_U/r_S) \times C_S$$

= peak response of methylphenidate from r_U the Sample solution

= peak response of methylphenidate from rs the Standard solution

Cs = concentration of USP Methylphenidate Hydrochloride RS in the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of methylphenidate hydrochloride (C₁₄H₁₉NO₂ · HCl) dissolved at each time point (i) shown in Table 7:

$$\begin{aligned} \operatorname{Result}_{1} &= C_{1} \times V \times D \times (1/L) \times 100\\ \operatorname{Result}_{2} &= (C_{2} + C_{1}) \times V \times D \times (1/L) \times 100\\ \operatorname{Result}_{i} &= (C_{i} + C_{i-1} + C_{i-2} + C_{i-3} + C_{i-x}) \times V \times D \times (1/L) \times \\ 100 \end{aligned}$$

- C_i = concentration of methylphenidate hydrochloride in the portion of sample withdrawn at time point *i* (mg/mL)
- V = volume of Medium, 50 mL
- D = dilution factor, 2
- L = label claim (mg/Tablet)

Calculate the average percentage released from 3-6 h:

$$\operatorname{Result} = (Y - X)/3$$

(%)

12-32

50-75

- Υ = cumulative drug released from 0-6 h
- Χ = cumulative drug released from 0-3 h

Tolerances: See Table 7.

1

4

Table 7		
Time		Amount Dissolved
(h)		(%)

Table 7	(continued	I)
---------	------------	----

Time (h)	Amount Dissolved (%)
10	NLT 80
3–6 (avg)	8–13 (%/h)

The percentages of the labeled amount of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCI$) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2. Test 9: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 9. Medium: 0.001 N hydrochloric acid TS; 500 mL, deaerated Apparatus 2: 50 rpm Times: 0.5, 2, 6, and 10 h Buffer: 2.93 g/L of sodium 1-heptanesulfonate in water. Adjust with 50% phosphoric acid to a pH of 3.2. Mobile phase: Buffer and acetonitrile (70:30) Standard solution: 0.072 mg/mL of USP Methylphenidate Hydrochloride RS in Medium. Sonicate to dissolve as needed. Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. Chromatographic system (See Chromatography (621), System Suitability.) Mode: LC Detector: UV 210 nm Column: 4.6-mm × 15-cm; 5-µm packing L1 Column temperature: 30° Flow rate: 1.5 mL/min Injection volume: 20 µL Run time: NLT 1.5 times the retention time of methylphenidate System suitability Sample: Standard solution Suitability requirements Tailing factor: NMT 2.0 Relative standard deviation: NMT 2.0% Analysis Samples: Standard solution and Sample solution Calculate the concentration (C_i) of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCl$) in the sample withdrawn from the vessel at each time point (i):

$\text{Result}_i = (r_U/r_S) \times C_S$

- = peak response of methylphenidate from the r_u Sample solution
- peak response of methylphenidate from the rs Standard solution
 - = concentration of USP Methylphenidate Hydrochloride RS in the Standard solution (mq/mL)

Calculate the percentage of the labeled amount of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCI$) dissolved at each time point (i):

 $\text{Result}_1 = C_1 \times V \times (1/L) \times 100$ $\text{Result}_{2} = \{ [C_{2} \times (V - V_{S})] + [C_{1} \times V_{S}] \} \times (1/L) \times 100$ $\text{Result}_{3} = (\{C_{3} \times [V - (2 \times V_{5})]\} + [(C_{2} + C_{1}) \times V_{5}]) \times (1/L) \times$ 100 $\text{Result}_{4} = (\{C_{4} \times [V - (3 \times V_{5})]\} + [(C_{3} + C_{2} + C_{1}) \times V_{5}]) \times (V_{5} + (V_{5} + C_{1}) \times V_{5}]) \times (V_{5} + (V_{5} + C_{2}) \times V_{5}) + (V_{5} + (V_{5} + C_{2}) \times V_{5})) \times (V_{5} + (V_{5} + C_{2}) \times V_{5}) + (V_{5} + (V_{5} + C_{2}) \times V_{5})) \times (V_{5} + (V_{5} + C_{2}) \times V_{5}) + (V_{5} + (V_{5} + C_{2}) \times V_{5})) \times (V_{5} + (V_{5} + C_{2}) \times V_{5}) + (V_{5} + (V_{5} + C_{2}) \times V_{5})) \times (V_{5} + (V_{5} + C_{2}) \times V_{5}) + (V_{5} + (V_{5} + C_{2}) \times V_{5}) \times (V_{5} + (V_{5} + C_{2}) \times V_{5}) + (V_{5} + (V$ $(1/L) \times 100$

© 2019 The United States Pharmacopeial Convention All Rights Reserved. C224112-M52731-CHM42015 rev. 00 20190726

 C_{s}

C_i	= concentration of methylphenidate
_	hydrochloride in the portion of sample
	withdrawn at time point (<i>i</i>) (mg/mL)

- = volume of Medium, 500 mL
- = label claim (mg/Tablet)
- V_{s} = volume of the Sample solution withdrawn from the Medium (mL)

Tolerances: See Table 8.

Table 8

Time Point (i)	Time (h)	Amount Dissolved (%)
1	0.5	10–30
2	2	28-48
3	6	70–90
4	10	NLT 85

The percentages of the labeled amount of methylphenidate hydrochloride ($C_{14}H_{19}NO_2 \cdot HCI$) dissolved at the times specified conform to Dissolution (711), Acceptance Table 2.▲ (RB 1-Aug-2019)

• UNIFORMITY OF DOSAGE UNITS (905): Meet the requirements

IMPURITIES

Change to read:

ORGANIC IMPURITIES

- Mobile phase: Dissolve 2 g of sodium 1-octanesulfonate in 730 mL of water. Adjust with phosphoric acid to a pH of 2.7. Mix with 270 mL of acetonitrile.
- Solution A: Acidified water; adjusted with phosphoric acid to a pH of 3
- **Diluent A:** Acetonitrile and Solution A (25:75)
- **Diluent B:** Acetonitrile and methanol (50:50)
- System suitability solution: 80 µg/mL of USP Methylphenidate Hydrochloride RS, 1 µg/mL of methylphenidate hydrochloride erythro isomer from USP Methylphenidate Hydrochloride Erythro Isomer Solution RS, and 2 µg/mL of USP Methylphenidate Related Compound A RS in Diluent A
- Standard solution: 0.2 µg/mL of USP Methylphenidate Hydrochloride RS, 0.5 µg/mL of methylphenidate hydrochloride erythro isomer from USP Methylphenidate Hydrochloride Erythro Isomer Solution RS, and 1.5 µg/mL of USP Methylphenidate Related Compound A RS in Diluent A
- Sample stock solution: Nominally 1 mg/mL of methylphenidate hydrochloride prepared as follows. Dissolve NLT 10 Tablets in a suitable volumetric flask with 20% of the total flask volume of *Diluent B*. [NOTE—Alternatively, a portion of powder from NLT 10 Tablets may be transferred to a suitable volumetric flask and suspended in 20% of the total flask volume of Diluent B.] Stir for 4 h. Dilute with Solution A to volume.
- Sample solution: 0.1 mg/mL of methylphenidate hydrochloride in Solution A from the Sample stock solution. [NOTE—Centrifuge before chromatographic analysis.]

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC Detector: UV 210 nm Column: 3.9-mm × 15-cm; 5-µm packing L1 Column temperature: 30°

Flow rate: 1 mL/min

- Injection volume: 25 µL Run time: 2 times the retention time of methylphenidate
- System suitability Sample: System suitability solution
- Suitability requirements
- **Resolution:** NLT 6.0 between the methylphenidate and erythro isomer peaks

Tailing factor: NMT 2.0 for the methylphenidate peak Relative standard deviation: NMT 2.0% for the methylphenidate peak; NMT 4.0% each for the methylphenidate related compound A and erythro isomer peaks

Analysis

rs

Samples: Standard solution and Sample solution Calculate the percentage of methylphenidate related compound A or erythro isomer in the portion of Tablets taken:

$$\text{Result} = (r_U/r_s) \times (C_s/C_U) \times 100$$

- = peak response of methylphenidate related r_U compound A or erythro isomer from the Sample solution
 - = peak response of methylphenidate related compound A or erythro isomer from the Standard solution
- = concentration of USP Methylphenidate Cs Related Compound A RS or methylphenidate hydrochloride erythro isomer in the Standard solution (mg/mL)
- = nominal concentration of methylphenidate Cu hydrochloride in the Sample solution (mg/mL)
- Calculate the percentage of any unspecified degradation product in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

- = peak response of each unspecified r_U degradation product from the Sample solution
- = peak response of USP Methylphenidate rs Hydrochloride RS from the Standard solution
- = concentration of USP Methylphenidate C_{s} Hydrochloride RS in the Standard solution (mg/mL)
- = nominal concentration of methylphenidate C_U hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: See Table ▲ 9. ▲ (RB 1-Aug-2019)

Table [▲] 9 _{▲ (RB 1-Aug-201}	9)
---	----

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Methylphenidate related com- pound A	0.47	1.5
Erythro isomer ^a	0.65	0.5
Methylphenidate	1.0	—
Any unspecified degradation product	_	0.2
Total degradation products	_	2.5

^a Methyl (RS, SR)-2-phenyl-2-(piperidin-2-yl)acetate.

Methylphenidate 7

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight containers.
- **CAGING AND STORAGE:** Preserve in tight containers store at controlled room temperature.
 LABELING: The labeling states the *Dissolution* test with which the product complies if other than *Test 1*.
 USP REFERENCE STANDARDS (11) USP Methylphenidate Hydrochloride RS

- USP Methylphenidate Hydrochloride Erythro Isomer Solution RS
- USP Methylphenidate Related Compound A RS α -Phenyl-2-piperidineacetic acid hydrochloride. $C_{13}H_{17}NO_2 \cdot HCl = 255.74$