remozolomiae

Temozolomide

 $C_6H_6N_6O_2$ 194.15

Imidazo[5,1-d]-1,2,3,5-tetrazine-8-carboxamide, 3,4-dihydro-3-methyl-4-oxo-;

3,4-Díhydro-3-methyl-4-oxoimidazo[5,1-d]-as-tetrazine-8-carboxamide [85622-93-1].

DEFINITION

Temozolomide contains NLT 98.0% and NMT 102.0% of temozolomide ($C_6H_6N_6O_2$), calculated on the as-is basis. [**CAUTION**—Temozolomide is cytotoxic. Great care should be taken to prevent inhaling particles of Temozolomide and exposure to the skin.]

IDENTIFICATION

• A. INFRARED ABSORPTION (197K)

• **B.** The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

[NOTE—Shake the solutions containing temozolomide to aid the dissolution. Do not sonicate.]

PROCEDURE

Solution A: 0.5% (v/v) glacial acetic acid in water **Mobile phase:** *Solution A* and methanol (96:4), containing 0.94 g/L of sodium 1-hexanesulfonate (0.005 M)

Diluent: Dimethyl sulfoxide. [NOTE—Use a freshly opened bottle.]

Standard solution: 1.0 mg/mL of USP Temozolomide RS in *Diluent*

Sample solution: 1.0 mg/mL of Temozolomide in

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 270 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing L1

Flow rate: 1 mL/min Injection volume: 10 μL System suitability Sample: Standard solution Suitability requirements Tailing factor: NMT 1.9 Relative standard deviation:

Relative standard deviation: NMT 1.5%

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of temozolomide $(C_6H_6N_6O_2)$ in the portion of Temozolomide taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak area from the Sample solution r_S = peak area from the Standard solution

 \hat{C}_S = concentration of USP Temozolomide RS in the Standard solution (mg/mL)

C_U = concentration of Temozolomide in the Sample solution (mg/mL)

Acceptance criteria: 98.0%-102.0% on the as-is basis

IMPURITIES

• RESIDUE ON IGNITION (281): NMT 0.1%

• HEAVY METALS, Method II (231): NMT 30 ppm

Change to read:

• ORGANIC IMPURITIES

[NOTE—Shake the solutions containing temozolomide to aid the dissolution. Do not sonicate.]

Mobile phase, Diluent, and **Sample solution:** Proceed as directed in the *Assay*.

Standard solution: 2.0 μg/mL each of USP Temozolomide RS and USP Dacarbazine Related Compound A RS in *Diluent*

System suitability solution: 0.5 μg/mL each of USP Temozolomide RS and USP Dacarbazine Related Compound A RS in *Diluent* from the *Standard solution*

Peak identification solution: Mix 5 mL of 0.1 N hydrochloric acid and 5 mL of 1.0 mg/mL of USP Temozolomide RS in *Diluent*. Heat the container for 1 h on a steam or boiling water bath. [NOTE—The preparation forms 2-azahypoxanthine, temozolomide acid, and dacarbazine related compound A.]

Chromatographic system: Proceed as directed in the *Assay*, using a run time of NLT 3.2 times the retention time of the temozolomide peak.

System suitability

Samples: Standard solution and System suitability solution

Suitability requirements

Resolution: NLT 2.0 between the temozolomide and dacarbazine related compound A peaks, *Standard* solution

Relative standard deviation: NMT 10% for both the dacarbazine related compound A and temozolomide peaks, *System suitability solution* **Analysis**

Samples: Sample solution, Standard solution, and Peak identification solution

Inject the *Peak identification solution*, and identify the organic impurities according to the relative retention times given in *Table 1*.

Calculate the percentage of dacarbazine related compound A (free base) in the portion of Temozolomide taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

 r_U = peak area of dacarbazine related compound A from the *Sample solution*

r_s = peak area of dacarbazine related compound A from the Standard solution

C_S = concentration of USP Dacarbazine Related Compound A RS in the *Standard solution* (mg/mL)

C_U = concentration of Temozolomide in the Sample solution (mg/mL)

 M_{rl} = molecular weight of dacarbazine related compound A (free base), 126.12

 M_{r2} = molecular weight of dacarbazine related compound A (hydrochloride salt), 162.58

Calculate the percentage of any other individual impurity in the portion of Temozolomide taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak area of each impurity from the Sample solution

- = peak area of temozolomide from the Standard rs solution
- = concentration of USP Temozolomide RS in the C_{S} Standard solution (mg/mL)
- C_U = concentration of Temozolomide in the Sample solution (mg/mL)
- F = relative response factor for each individual impurity (see *Table 1*)

 Acceptance criteria: See *Table 1*. [NOTE—Disregard

any unspecified impurity peaks less than 0.05%.]

Table 1

iubic i				
Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)	
2-Azahypoxanthine ^a	0.42	1.6	0.2	
Temozolomide relat- ed compound Ab	0.53	1.0	0.5	
Temozolomide acid ^c	0.84	1.0	0.1	
Temozolomide	1.0		_	
Dacarbazine related compound A (free base) ^d	1.37		0.1	
 Cyanotemozol- omide^{e,f} (if present) 	2.3	1.0	0.15 ● (RB 1-Jun- 2013)	

^a 4a,5-Dihydro-4*H*-imidazo[4,5-*d*][1,2,3]triazin-4-one.

Table 1 (Continued)

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)	
Any unspecified impurity	_	1.0	0.10	
Total impurities	_		0.8	

^a 4a,5-Dihydro-4*H*-imidazo[4,5-*d*][1,2,3]triazin-4-one.

SPECIFIC TESTS

• Water Determination, Method Ic (921): NMT 0.4%

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in well-closed containers, and store at room temperature.
- **USP REFERENCE STANDARDS** (11) USP Dacarbazine Related Compound A RS 5-Aminoimidazole-4-carboxamide hydrochloride. C₄H₆N₄O · HCl 162.58 USP Temozolomide RS

^b 4-Diazo-4*H*-imidazole-5-carboxamide.

^c 3-Methyl-4-oxo-3,4-dihydroimidazo[5,1-d][1,2,3,5]tetrazine-8-carboxylic

d 5-Aminoimidazole-4-carboxamide. It is a free base of dacarbazine related compound A.
e 3-Methyl-4-oxo-3,4-dihydroimidazo[5,1-d][1,2,3,5]tetrazine-8-carboni-

f If possible from the manufacturing process. • (RB 1-Jun-2013)

^b 4-Diazo-4*H*-imidazole-5-carboxamide.

c 3-Methyl-4-oxo-3,4-dihydroimidazo[5,1-d][1,2,3,5]tetrazine-8-carboxylic acid.

d 5-Aminoimidazole-4-carboxamide. It is a free base of dacarbazine related compound A.

e 3-Methyl-4-oxo-3,4-dihydroimidazo[5,1-d][1,2,3,5]tetrazine-8-carbonitrile.

f If possible from the manufacturing process. • (RB 1-Jun-2013)