
Levothyroxine Sodium

 $\begin{array}{ll} C_{1s}H_{10}I_{4}NNaO_{4}\cdot xH_{2}O\ (anhydrous) & 798.85\\ \text{L-Tyrosine, } O-(4-hydroxy-3,5-diiodophenyl)-3,5-diiodo-, \end{array}$

monosodium salt, hydrate;

Monosodium L-thyroxine hydrate [25416-65-3]. Anhydrous [55-03-8].

DEFINITION

Levothyroxine Sodium is the sodium salt of L-3,3',5,5'tetraiodothyronine. It contains NLT 97.0% and NMT 103.0% of levothyroxine sodium ($C_{15}H_{10}I_4NNaO_4$), calculated on the anhydrous basis.

IDENTIFICATION

• **A. INFRARED ABSORPTION** (197)

- [NOTE—Methods described in (197K) or (197A) may be used.]
- **B.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.
- C. IDENTIFICATION TESTS—GENERAL (191), Chemical Identification Tests, Sodium
- **Sample solution:** To 200 mg add 2 mL of 2 N sulfuric acid. Heat on a water bath and then carefully heat over an open flame, increasing the temperature gradually up to about 600°. [NOTE—Alternative procedures for igniting the material could also be used.] Continue the ignition until most of the particles have disappeared. Dissolve the residue in 2 mL of water.
- Acceptance criteria: The Sample solution meets the requirements of test A.

ASSAY

PROCEDURE

Mobile phase: Acetonitrile and water (4:6) that contains 0.5 mL of phosphoric acid in each 1000 mL

- **Solution A:** 400 mg of sodium hydroxide in 500 mL of water. Cool and add 500 mL of methanol.
- **Levothyroxine stock solution:** 0.4 mg/mL of USP Levothyroxine RS in *Solution A*
- **Liothyronine stock solution:** 0.4 mg/mL of liothyronine from USP Liothyronine RS in *Solution A*. Make a 1:100 dilution of this solution using *Mobile phase*.

Standard solution: 10 μg/mL of levothyroxine from Levothyroxine stock solution and 0.2 μg/mL of liothyronine from Liothyronine stock solution in Mobile phase

Sample solution: 10 µg/mL of Levothyroxine Sodium in *Mobile phase*. [NOTE—A small amount of 0.01 M sodium hydroxide methanolic can be used to facilitate the dissolution of the sample.]

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 225 nm

- Column: 4.6-mm × 25-cm; packing L10
- Flow rate: 1.5 mL/min
- Injection volume: 100 µL

System suitability

Sample: Standard solution

Suitability requirements

Resolution: NLT 5.0 between liothyronine and levothyroxine

Relative standard deviation: NMT 2.0% for levothyroxine

- Analysis
 - **Samples:** Standard solution and Sample solution Calculate the percentage of levothyroxine sodium $(C_{15}H_{10}I_4NNaO_4)$ in the portion of Levothyroxine Sodium taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r_1}/M_{r_2}) \times 100$$

- *r_u* = peak response of levothyroxine from the *Sample solution*
- r_s = peak response of levothyroxine from the Standard solution
- C_s = concentration of USP Levothyroxine RS in the Standard solution (μg/mL)
- C_U = concentration of Levothyroxine Sodium in the Sample solution (μg/mL)
- M_{r_1} = molecular weight of levothyroxine sodium, 798.85
- M_{r_2} = molecular weight of levothyroxine, 776.87

Acceptance criteria: 97.0%–103.0% on the anhydrous basis

IMPURITIES

- [NOTE—On the basis of the synthetic route, perform either Organic Impurities, Procedure 1 or Organic Impurities, Procedure 2. Procedure 2 is recommended when related compounds listed in Table 3 may be present.]
- ORGANIC IMPURITIES, PROCEDURE 1 Diluent: Acetonitrile and water (1:1)
- **Solution A:** Dilute 5 mL of phosphoric acid with *Diluent* to 100.0 mL.
- **Mobile phase:** Dissolve 1.0 g of sodium 1heptanesulfonate in 200 mL of water. Add 200 mL of acetonitrile, 400 mL of methanol, and 1.0 mL of phosphoric acid. Dilute with water to 1 L.
- Standard stock solution 1: Transfer 25 mg of USP Levothyroxine RS to a 100-mL volumetric flask. Add 50 mL of *Diluent* and 1 drop of 10 N sodium hydroxide, and sonicate until dissolved. Add 7 mL of *Solution A* and dilute with *Diluent* to volume.
- **Standard stock solution 2:** Transfer 25 mg of USP Liothyronine RS to a 100-mL volumetric flask. Add 50 mL of *Diluent* and 1 drop of 10 N sodium hydroxide, and sonicate until dissolved. Add 7 mL of *Solution A* and dilute with *Diluent* to volume.
- **System suitability solution:** Transfer 5.0 mL each of *Standard stock solution 1* and *Standard stock solution 2* to a 100-mL volumetric flask. Add 7 mL of *Solution A*, and dilute with *Diluent* to volume.
- **Standard solution:** Transfer 4.0 mL of *System suitability solution* into a 100-mL volumetric flask. Add 7 mL of *Solution A*, and dilute with *Diluent* to volume.
- **Sample solution:** Transfer 25 mg of Levothyroxine Sodium to a 100-mL volumetric flask. Add 50 mL of *Diluent*, and sonicate until dissolved. Add 7 mL of *Solution A*, and dilute with *Diluent* to volume.
- **Blank solution:** Transfer 7 mL of *Solution A* to a 100-mL volumetric flask, and dilute with *Diluent* to volume. **Chromatographic system**
- (See Chromatography (621), System Suitability.) Mode: LC
- Detector: UV 225 nm
- **Column:** 4.6-mm × 15-cm; 5-µm packing L7 **Column temperature:** 35°

Flow rate: 1.5 mL/min

Injection volume: 15 µL

System suitability

Samples: System suitability solution and Standard solution Suitability requirements

Resolution: NLT 5.0 between levothyroxine and liothyronine, System suitability solution

Relative standard deviation: NMT 2.0% for the levothyroxine peak, Standard solution

Analysis

Samples: Standard solution, Sample solution, and Blank solution

[NOTE—Record the chromatograms for at least 6 times the retention time of the levothyroxine peak. Verify that no peaks elute in the Blank solution at the expected retention times for levothyroxine and related compounds.]

Calculate the area percentage of each related compound in the portion of Levothyroxine Sodium taken:

Result = $(r_{U}/r_{s}) \times (C_{s}/C_{U}) \times (M_{r1}/M_{r2}) \times 100$

- r_u = peak response of each impurity from the Sample solution
- = peak response of levothyroxine from the rs Standard solution
- = concentration of USP Levothyroxine RS in the Cs Standard solution (mg/mL)
- C_U = concentration of Levothyroxine Sodium in the Sample solution (mg/mL)
- = molecular weight of levothyroxine sodium, M_{r1} 798.85
- = molecular weight of levothyroxine, 776.87 M_{r2}

[NOTE—The relative response factor for the impurities listed in Table 1 is 1.00. Any unspecified impurity peaks should be assigned a relative response factor of 1.00.]

Disregard peaks corresponding to those of the Blank solution, and disregard peaks corresponding to less than 0.03%.

Acceptance criteria: See Table 1.

Table 1

l'able l				
Relative Retention Time	Acceptance Criteria, NMT (%)			
0.65–0.70	1.0			
0.71–0.76	0.15			
1.0	_			
1.13–1.28	0.15			
1.47–1.53	0.15			
1.50–1.86	0.20			
2.42–2.51	0.30			
3.17–3.45	0.15			
3.46–3.70	0.15			
—	0.10			
	Relative Retention Time 0.65-0.70 0.71-0.76 1.0 1.13-1.28 1.47-1.53 1.50-1.86 2.42-2.51 3.17-3.45			

Table 1 (continued)

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Total impurities	_	2.0

^a O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodo-β-hydroxy-L-tyrosine.

^b 2-Hydroxy-2-[4-(4-hydroxy-3,5-diiodophenoxy)-3,5-diiodophenyl]acetic acid.

^c *N*-Formyl-O-(4-hydroxy-3,5-diiodophenyl)-3,5-diiodo-L-tyrosine.

^d 2-[4-(4-Hydroxy-3,5-diiodophenoxy)-3,5-diiodophenyl]acetamide.

^e N-Acetyl-O-(4-hydroxy-3,5-diiodophenyl)-3,5-diiodo-L-tyrosine.

^f2-[4-(4-Hydroxy-3,5-diiodophenoxy)-3,5-diiodophenyl]acetic acid.

⁹4-(4-Hydroxy-3,5-diiodophenoxy)-3,5-diiodobenzaldehyde.

^h 4-(4-Hydroxy-3,5-diiodophenoxy)-3,5-diiodobenzoic acid.

Change to read:

• ORGANIC IMPURITIES, PROCEDURE 2

Solution A: Dissolve 9.7 g of sulfamic acid in 2000 mL of water. Add 1.5 g of sodium hydroxide, mix to dissolve. Adjust with 2 N sodium hydroxide to a pH of 2.0. Solution B: Acetonitrile

Mobile phase: See Table 2.

Table 2

Time (min)	Solution A (%)	Solution B (%)		
0	70	30		
10	70	30		
40	20	80		
50	20	80		
53	70	30		
75	70	30		

Diluent 1: Methanol and Solution A (90:10)

Diluent 2: Acetonitrile and Solution À (30:70). Mix with Diluent 1 (1:1).

Identification solution: **A**0.2 mg/mL of USP Levothyroxine Peak Identification Mixture RS in Diluent 2▲ (IRA 1-Sep-2019)

Standard stock solution: 0.1 mg/mL each of USP

Levothyroxine RS and USP Liothyronine RS in Diluent 1 Standard solution: 0.002 mg/mL each of USP

Levothyroxine RS and USP Liothyronine RS, prepared using the Standard stock solution in Diluent 2 Sensitivity solution: 0.0002 mg/mL each of USP

Levothyroxine RS and USP Liothyronine RS, prepared using the Standard solution in Diluent 2

Sample solution: Dissolve an amount of Levothyroxine Sodium in Diluent 1 to obtain a solution with a known concentration of about 1.0 mg/mL. Further dilute a portion of this solution with *Diluent 2* to obtain a solution with a known concentration of about 0.2 mg/mL.

Blank solution: Use Diluent 2.

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 225 nm

Column: 4.0-mm × 15-cm; 3-µm packing L1 Flow rate: 1.0 mL/min

Injection volume: 25 µL System suitability

Samples: Standard solution and Sensitivity solution

Suitability requirements

Resolution: NLT 5 between levothyroxine and liothyronine, Standard solution Signal-to-noise ratio: NLT 5 for each peak, Sensitivity solution calculated as follows:

Result = (2H)/h

- Н = measured height of the peak h
- = amplitude of the average measured baseline noise

Analysis

- Samples: Identification solution, Standard solution, Sample solution, and Blank solution
- [NOTE-Identify the components on the basis of their relative retention times as listed in Table 3.]

Calculate the percentage of liothyronine sodium in the portion of Levothyroxine Sodium taken:

 $\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$

- = peak response of liothyronine from the r_u Sample solution
- = peak response of liothyronine from the rs Standard solution
- = concentration of USP Liothyronine RS in the Cs Standard solution (mg/mL)
- = concentration of Levothyroxine Sodium in the C_{U} Sample solution (mg/mL)
- = molecular weight of liothyronine sodium, M_{r1} 672.96
- = molecular weight of liothyronine, 650.98 M_{r2}

Calculate the percentage of any other impurity in the portion of Levothyroxine Sodium taken:

 $\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$

- = peak response of any impurity from the r_U Sample solution
- = peak response of levothyroxine from the rs Standard solution
- = concentration of USP Levothyroxine RS in the Cs Standard solution (mg/mL)
- C_{U} = concentration of Levothyroxine Sodium in the Sample solution (mg/mL)
- M_{r1} = molecular weight of levothyroxine sodium, 798.85
- = molecular weight of levothyroxine, 776.87 M_{r^2}
- [NOTE—The relative response factor for the impurities listed in Table 3 is 1.00. Any unspecified impurity peaks should be assigned a relative response factor of 1.00.]
- Disregard peaks corresponding to those of the Blank solution, and disregard peaks corresponding to less than 0.03%.

Acceptance criteria: See Table 3.

Table	3
-------	---

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Liothyronine	0.65	1.0

Table 3 (continued)

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Monochlorotriiodothyronine ^a	0.94	0.15
Levothyroxine <i>N</i> -methylamide ^b	0.97	0.15
Levothyroxine	1.0	_
Triiodothyroacetic acid, or T3-acetic acid ^c	1.57	0.15
<i>O</i> -(4-Hydroxy-3,5-diiodophenyl)thyro- xine, or T6 ^d	1.61	0.50
O-Methyl-tetraiodothyroeth- ylamine, or T4-amine O-methyl ^e	1.76	0.30
T4-Acetic acid ^f	1.79	0.30
Individual unspecified impurity	_	0.10
Total impurities	—	2.0

a (S)-2-Amino-3-[3-chloro-4-(4-hydroxy-3,5-diiodophenoxy)-5-iodophenyl] propanoic acid.

^b (*S*)-2-Amino-3-[4-(4-hydroxy-3,5-diiodophenoxy)-3,5-diiodophenyl]-*N*methylpropanamide.

- ^c [4-(4-Hydroxy-3-iodophenoxy)-3,5-diiodophenyl]acetic acid.
- d⁽S)-2-Amino-3-[4-[4-(4-hydroxy-3,5-diiodophenoxy)-3,5-diiodophenoxy] -3,5-diiodophenyl]propanoic acid.

- ^e 2-[4-(3,5-Diiodo-4-methoxyphenoxy)-3,5-diiodophenyl]ethanamine. ^f 2-(4-(4-Hydroxy-3,5-diiodophenoxy)-3,5-diiodophenyl)acetic acid.

SPECIFIC TESTS

• **OPTICAL ROTATION** (781S), *Procedures, Specific Rotation* Sample solution: Equivalent to 30 mg/mL of anhydrous Levothyroxine Sodium in alcohol and 1 N sodium hydroxide (2:1)

Acceptance criteria: -5° to -6°

• WATER DETERMINATION (921), Method I: NMT 11.0%

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight containers, protected from light. Store as stated in the labeling instructions.
- **LABELING:** If a test for Organic Impurities other than *Procedure 1* is used, the labeling states the test with which the article complies.

Change to read:

- USP REFERENCE STANDARDS (11)
 - USP Levothyroxine RS O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodo-L-tyrosine. C₁₅H₁₁I₄NO₄ 776.87

USP Levothyroxine Peak Identification Mixture RS

Levothyroxine sodium spiked with liothyronine, triiodothyroacetic acid, and tetraiodothyroacetic acid in methanol. ▲ (IRA 1-Sep-2019)

USP Levothyroxine Sodium RS

USP Liothyronine RS

O-(4-Hydroxy-3-iodophenyl)-3,5-diiodo-L-tyrosine. C₁₅H₁₂I₃NO₄ 650.98