

Guanfacine Extended-Release Tablets

Type of Posting
Posting Date
27-May-2022
Official Date
1-Jun-2022
Expert Committee
Small Molecules 2

In accordance with the Rules and Procedures of the Council of Experts, the Small Molecules 2 Expert Committee has revised the Guanfacine Extended-Release Tablets monograph. The purpose of this revision is to add *Dissolution Test 2* to accommodate FDA-approved drug products with different dissolution conditions and/or tolerances than the existing dissolution test. *Labeling* information has been incorporated to support the inclusion of *Dissolution Test 2*. The revision also necessitates a change in the table numbering in the test for *Organic Impurities*.

• *Dissolution Test 2* was validated using the Zorbax SB-C8 brand of column with L7 packing. The typical retention time for guanfacine is about 4 min.

The Guanfacine Extended-Release Tablets Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Robyn Fales, Senior Scientist I (240-221-2047 or rnp@usp.org).

Guanfacine Extended-Release Tablets

DEFINITION

Guanfacine Extended-Release Tablets contain an amount of guanfacine hydrochloride equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.
- **B.** The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY

PROCEDURE

Buffer: 20 mM <u>sodium bicarbonate</u> and 10 mM <u>tetrabutylammonium phosphate</u> prepared as follows. For each liter, dissolve 1.68 g of <u>sodium bicarbonate</u> and 3.39 g of <u>tetrabutylammonium phosphate</u> in 970 mL of <u>water</u>. Adjust with 5 N <u>sodium hydroxide</u> to a pH of 10.0. Dilute with <u>water</u> to volume.

Mobile phase: Acetonitrile and Buffer (17:83)

Standard solution: 0.023 mg/mL of USP Guanfacine Hydrochloride RS in Mobile phase

Sample solution: Nominally 0.02 mg/mL of guanfacine prepared as follows. Transfer a portion of coarsely powdered Tablets (NLT 20) to an appropriate volumetric flask as directed in <u>Table 1</u>. Add 50% of the flask volume of <u>Mobile phase</u>, sonicate for 10 min, and shake mechanically for 1 h. [Note—The sonicator should be kept cold with ice to maintain a temperature below 25°.] Repeat the steps of the sonication/shaking sequence two additional times with an additional sonication of 10 min at the end. [Note—An additional 1 h of shaking and 10 min of sonication may be needed if the sample is not fully dissolved.] Dilute with <u>Mobile phase</u> to volume. Centrifuge a portion of this solution for 10 min and use the supernatant. [Note—The use of a centrifuge speed of NLT 2500 rpm may be suitable.]

Table 1

Tablet Strength (mg)	Quantity Equivalent to Guanfacine To Be Transferred (mg)	Volumetric Flask Size (mL)	Nominal Concentration of Guanfacine (mg/mL)
1	1	50	0.02
2	2	100	0.02
3	4	200	0.02
4	4	200	0.02

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm. For *Identification B*, use a diode array detector in the range of 200–400 nm.

Column: 4.6-mm \times 15-cm; 5- μ m packing <u>L1</u>

Temperatures
Autosampler: 4°
Column: 27°

Flow rate: 1 mL/min

Injection volume: 100 µL

Run time: NLT 1.8 times the retention time of guanfacine

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of guanfacine $(C_9H_9Cl_2N_3O)$ in the portion of Tablets taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times (M_{r1}/M_{r2}) \times 100$$

 r_U = peak response of guanfacine from the Sample solution r_S = peak response of guanfacine from the Standard solution

 C_S = concentration of <u>USP Guanfacine Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 C_{IJ} = nominal concentration of guanfacine in the Sample solution (mg/mL)

 M_{r1} = molecular weight of guanfacine, 246.09

 M_{r2} = molecular weight of guanfacine hydrochloride, 282.55

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

Change to read:

• **Dissolution** (711)

^Test 1 (RB 1-Jun-2022)

Medium: Hydrochloric acid buffer, pH 2.2; 900 mL prepared as follows. For each liter, mix 250 mL of 0.2 M <u>potassium chloride</u> with 39 mL of 0.2 N <u>hydrochloric acid</u>. Dilute with <u>water</u> to volume.

Apparatus 2: 75 rpm with suitable sinkers

Times: 1, 4, 8, and 20 h

Buffer: 20 mM <u>sodium bicarbonate</u>, prepared as follows. For each liter, dissolve 1.68 g of <u>sodium</u> <u>bicarbonate</u> in 970 mL of <u>water</u>, and adjust with 5 N <u>sodium hydroxide</u> to a pH of 10.0. Dilute with <u>water</u> to volume.

Mobile phase: Acetonitrile and Buffer (25:75)

Standard stock solution: 0.23 mg/mL of USP Guanfacine Hydrochloride RS in Mobile phase

Standard solution: 0.0023 mg/mL of <u>USP Guanfacine Hydrochloride RS</u> in *Medium* from *Standard stock solution*

Sample solution: Pass a portion of the solution under test through a suitable filter at the time points specified.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing $\perp 1$

Flow rate: 1.2 mL/min
Injection volume: 20 µL

Run time: NLT 1.4 times the retention time of guanfacine

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration of guanfacine ($C_9H_9Cl_2N_3O$) in the sample withdrawn from the vessel at each time point (i):

Result =
$$(r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$$

 r_U = peak response of guanfacine from the Sample solution

 r_S = peak response of guanfacine from the Standard solution

 C_S = concentration of <u>USP Guanfacine Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 M_{r1} = molecular weight of guanfacine, 246.09

 M_{r2} = molecular weight of guanfacine hydrochloride, 282.55

Calculate the percentage of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$) dissolved at each time point (i):

$$\begin{aligned} \text{Result}_1 &= C_1 \times V \times (1/L) \times 100 \\ \text{Result}_2 &= \{ [C_2 \times (V - V_S)] + (C_1 \times V_S) \} \times (1/L) \times 100 \\ \\ \text{Result}_3 &= (\{C_3 \times [V - (2 \times V_S)]\} + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100 \\ \end{aligned}$$

$$Result_4 = (\{C_4 \times [V - (3 \times V_S)]\} + [(C_3 + C_2 + C_1) \times V_S]) \times (1/L) \times 100$$

 C_i = concentration of guanfacine in the portion of the sample withdrawn at the specified time point (i) (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point (i) (mL)

Tolerances: See <u>Table 2</u>.

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	13-33
2	4	37–57
3	8	57–77
4	20	NLT 80

The percentages of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

▲Test 2

If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 2.

Medium: Hydrochloric acid buffer, pH 2.2 (3.73 g/L of <u>potassium chloride</u> in <u>water</u>. Adjust with <u>hydrochloric acid</u> to a pH of 2.2.); 900 mL, deaerated

Apparatus 2: 75 rpm with wire helix sinker

Times: 1, 4, 9, and 15 h

Solution A: 1 g/L of <u>sodium dodecyl sulfate</u> and 0.1% of <u>phosphoric acid</u> in <u>water</u> prepared as follows. Dissolve 1 g of <u>sodium dodecyl sulfate</u> in 1000 mL of <u>water</u>. Add 1 mL of <u>phosphoric acid</u> to the resulting solution.

Mobile phase: Acetonitrile and Solution A (50:50)

Standard stock solution: 0.2525 mg/mL of <u>USP Guanfacine Hydrochloride RS</u> in <u>methanol</u>

Standard solution: ($L/900 \times 1.15$) mg/mL of <u>USP Guanfacine Hydrochloride RS</u> prepared by diluting Standard stock solution with Medium, where L is the label claim in mg/Tablet.

Sample solution: At the times specified, withdraw a known volume of the solution under test. Pass through a suitable filter.

Chromatographic system

(See <u>Chromatography (621), System Suitability</u>.)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm \times 15-cm; 5 μ m packing <u>L7</u>

Flow rate: 1 mL/min
Injection volume: 50 μL

Run time: NLT 1.5 times the retention time of guanfacine

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 1.5

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration of guanfacine ($C_9H_9Cl_2N_3O$) in the sample withdrawn from the vessel at each time point (i):

Result =
$$(r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$$

 r_U = peak response of guanfacine from the Sample solution

 r_S = peak response of guanfacine from the Standard solution

 C_S = concentration of <u>USP Guanfacine Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 M_{r1} = molecular weight of guanfacine, 246.09

 M_{r2} = molecular weight of guanfacine hydrochloride, 282.55

Calculate the percentage of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$) dissolved at each time point (i):

$$\begin{aligned} \text{Result}_1 &= C_1 \times V \times (1/L) \times 100 \\ \text{Result}_2 &= \{ [C_2 \times (V - V_S)] + (C_1 \times V_S) \} \times (1/L) \times 100 \\ \text{Result}_3 &= (\{C_3 \times [V - (2 \times V_S)]\} + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100 \\ \text{Result}_4 &= (\{C_4 \times [V - (3 \times V_S)]\} + [(C_3 + C_2 + C_1) \times V_S]) \times (1/L) \times 100 \end{aligned}$$

c_i = concentration of guanfacine in the portion of the sample withdrawn at the specified time point (i) (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

 V_S = volume of the Sample solution withdrawn at each time point (i) (mL)

Tolerances: See <u>Table 3</u> and <u>Table 4</u>.

Table 3. For Tablets Labeled to Contain 1 mg

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	NMT 30
2	4	40-60
3	9	70-90
4	15	NLT 85

Table 4. For Tablets Labeled to Contain 2, 3, and 4 mg

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	NMT 25

Time Point (i)	Time (h)	Amount Dissolved (%)
2	4	35-55
3	9	60-80
4	15	NLT 80

The percentages of the labeled amount of guanfacine (C₉H₉Cl₂N₃O) dissolved at the times specified conform to *Dissolution* (711), *Acceptance Table 2*. ▲ (RB 1-Jun-2022)

• **Uniformity of Dosage Units** (905): Meet the requirements

IMPURITIES

Change to read:

• ORGANIC IMPURITIES

Buffer, Mobile phase, Sample solution, and **Chromatographic system:** Proceed as directed in the *Assay*.

Standard solution 1: Prepare as directed for the *Standard solution* in the *Assay*.

Standard solution 2: 0.023 mg/mL of 2,6-dichlorophenylacetic acid in *Mobile phase*

System suitability solution: 0.046 μ g/mL each of <u>USP Guanfacine Hydrochloride RS</u> and <u>2,6-</u>

dichlorophenylacetic acid in Mobile phase from Standard solution 1 and Standard solution 2

System suitability

Samples: Standard solution 1 and System suitability solution

[Note—See [▲]Table 5_{▲ (RB 1-Jun-2022)} for the relative retention times.]

Suitability requirements

Resolution: NLT 4.0 between 2,6-dichlorophenylacetic acid and guanfacine, *System suitability solution*

Relative standard deviation: NMT 2.0%, Standard solution 1

Analysis

Samples: Standard solution 1 and Sample solution

Calculate the percentage of 2,6-dichlorophenylacetic acid or any unspecified degradation product in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times (1/F) \times 100$$

 r_U = peak response of 2,6-dichlorophenylacetic acid or any unspecified degradation product from the Sample solution

 r_S = peak response of guanfacine from *Standard solution 1*

 C_S = concentration of <u>USP Guanfacine Hydrochloride RS</u> in *Standard solution 1* (mg/mL)

 C_U = nominal concentration of guanfacine in the Sample solution (mg/mL)

 M_{r1} = molecular weight of guanfacine, 246.09

 M_{r2} = molecular weight of guanfacine hydrochloride, 282.55

F = relative response factor (see $\frac{A}{Table 5}$ (RB 1-Jun-2022))

Acceptance criteria: See [▲]*Table 5*.

Table 5 (RB 1-Jun-2022)

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
2,6-Dichlorophenylacetic acid	0.6	0.65	1.0
Guanfacine	1.0	_	_
Any unspecified degradation product	_	1.0	0.5
Total degradation products	_	_	1.5

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight containers and store at controlled room temperature.

Add the following:

▲ • LABELING: When more than one *Dissolution* test is given, the labeling states the test used only if *Test 1* is not used. ▲ (RB 1-Jun-2022)

• <u>USP REFERENCE STANDARDS (11)</u> <u>USP Guanfacine Hydrochloride RS</u>

Page Information:

Not Applicable

Current DocID:

© 2022 The United States Pharmacopeial Convention All Rights Reserved.