

Fexofenadine Hydrochloride and Pseudoephedrine Hydrochloride Extended-Release Tablets

Type of Posting	Revision Bulletin
Posting Date	27–Jul–2018
Official Date	01–Aug–2018
Expert Committee	Chemical Medicines Monographs 6
Reason for Revision	Compliance

In accordance with the Rules and Procedures of the 2015–2020 Council of Experts, the Chemical Medicines Monographs 6 Expert Committee has corrected two errors in the Fexofenadine Hydrochloride and Pseudoephedrine Hydrochloride Extended-Release Tablets Revision Bulletin originally posted on June 29, 2018, with an official date of July 1, 2018.

In *Dissolution Test* 7, the specifications in *Times* for *Pseudoephedrine hydrochloride* have been corrected to read "45 min; 3, 5, and 12 h", which now matches the times in *Table 8*. Because of a transcription error, the *Times* for *Pseudoephedrine hydrochloride* had been indicated as "45 min; 2, 4, and 12 h".

In addition, the amount of methanol in *Standard stock solution A* has been corrected from "NMT 0.5%" to "NMT 5%".

Should you have any questions, please contact Richard Nguyen, Associate Scientific Liaison (301-816-8170 or rbn@usp.org), or Tsion Bililign, Scientific Liaison (301-816-8286 or tb@usp.org).

Fexofenadine Hydrochloride and Pseudoephedrine Hydrochloride Extended-Release Tablets

DEFINITION

Fexofenadine Hydrochloride and Pseudoephedrine Hydrochloride Extended-Release Tablets contain NLT 93.0% and NMT 107.0% of the labeled amounts of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCI$) and pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCI$).

IDENTIFICATION

- A. The retention times of the major peaks of the Sample solution correspond to those of the Standard solution, as obtained in the Assay.
- B. THIN-LAYER CHROMATOGRAPHIC IDENTIFICATION TEST $\langle 201 \rangle$
- Standard solution A: 6 mg/mL of USP Fexofenadine Hydrochloride RS in methanol
- **Standard solution B:** 12 mg/mL of USP Pseudoephedrine Hydrochloride RS in methanol
- Sample solution: Transfer the equivalent of 30 mg of fexofenadine hydrochloride and 60 mg of pseudoephedrine hydrochloride from finely powdered Tablets (NLT 4) into a suitable vessel, and add 5 mL of methanol. Cap the vessel, and shake vigorously for 2 min. Pass the resulting suspension through a suitable filter of 0.45-µm pore size. Use the filtrate.
- Adsorbent: 0.2-mm layer of HPTLC silica gel mixture. Dry the plate at 105° for 1 h before use.
- Application volume: 10 µL
- **Developing solvent system:** Toluene, dehydrated alcohol, and ammonium hydroxide (50:45:5)
- **Analysis:** Proceed as directed, using the *Developing solvent* system. After removal of the plate, mark the solvent front, and allow the plate to air-dry. Heat the plate at 105° until the odor of ammonia disappears (about 5 min). Allow the plate to cool, and examine under UV light at 254 nm. [NOTE—The R_F values for fexofenadine and
- pseudoephedrine are 0.17 and 0.39, respectively.] **Acceptance criteria:** The R_F value of fexofenadine hydrochloride in the *Sample solution* is comparable to that of fexofenadine hydrochloride in *Standard solution A*. The R_F value of pseudoephedrine hydrochloride in the *Sample solution* is comparable to that of pseudoephedrine hydrochloride in *Standard solution B*.

ASSAY

Change to read:

PROCEDURE 1

- **Buffer:** Dissolve 6.8 g of sodium acetate and 16.22 g of sodium 1-octanesulfonate in water, and dilute with water to 1 L. Adjust with glacial acetic acid to a pH of 4.6. **Mobile phase:** Methanol and *Buffer* (13:7)
- **Diluent:** Methanol and *Buffer* (3:2)
- **System suitability solution:** Transfer 40 mg of USP Pseudoephedrine Hydrochloride RS to a 50-mL volumetric flask. Add 5 mL of *tert*-butylhydroperoxide solution, and sonicate. Cover the flask opening with aluminum foil, and place the flask in an oven at 90° for 60 min. Remove from the oven, and allow to cool. Add 35 mL of *Mobile phase*, and cool to room temperature. Dilute with *Mobile phase* to volume. The degradation of pseudoephedrine hydrochloride by this process produces the related compound ephedrone.

Fexofenadine 1

- **Related compounds stock solution:** Dissolve quantities of USP Fexofenadine Related Compound A RS and decarboxylated degradant¹ in a volume of methanol, and dilute with *Buffer* to obtain a ratio of methanol to *Buffer* of 3:2. Dilute with *Diluent* to obtain a solution having concentrations of 0.2 mg/mL for each component.
- **Related compounds solution:** 0.02 mg/mL each of USP Fexofenadine Related Compound A RS and decarboxylated degradant from *Related compounds stock solution* diluted with *Mobile phase*
- Standard stock solution: 0.4 mg/mL of fexofenadine hydrochloride and 0.8 mg/mL of pseudoephedrine hydrochloride from USP Fexofenadine Hydrochloride RS and USP Pseudoephedrine Hydrochloride RS, respectively, in *Mobile phase*
- Standard solution: Dilute 6.0 mL of the Standard stock solution and 15.0 mL of the Related compounds solution with Mobile phase to 50 mL to obtain a solution having known concentrations of 0.096 mg/mL of pseudoephedrine hydrochloride, 0.048 mg/mL of fexofenadine hydrochloride, 0.006 mg/mL of fexofenadine related compound A, and 0.006 mg/mL of decarboxylated degradant.
- **Sample stock solution:** Nominally equivalent to 1.2 mg/mL of fexofenadine hydrochloride and 2.4 mg/mL of pseudoephedrine hydrochloride. To prepare, transfer NLT 10 whole Tablets to a 500-mL volumetric flask. Add 300 mL of methanol, and shake by mechanical means at high speed for 60 min. Sonicate the flask for 60 min at 40°. Add 150 mL of *Buffer*, and sonicate for 60 min at 40°. Vent the flask, and vigorously shake the flask by hand at 15-min intervals during the mechanical shaking and sonication steps. Cool to room temperature, and dilute with *Buffer* to volume to obtain a final concentration. Pass a portion of this solution through a filter of 0.45-μm or finer pore size, and use the filtrate.
- Sample solution: 0.048 mg/mL and 0.096 mg/mL of fexofenadine hydrochloride and pseudoephedrine hydrochloride, respectively, from the *Sample stock solution* diluted with *Mobile phase*. [NOTE—Alternatively, centrifuge the *Sample stock solution*, and use the supernatant to prepare the *Sample solution*. Filter the *Sample solution* before analysis.]
- Chromatographic system
- (See Chromatography (621), System Suitability.) Mode: LC
- Detector: UV 215 nm
- **Column:** 4.6-mm × 5-cm; 5-µm packing L6 connected in series to a 4.6-mm × 25-cm; 5-µm packing L11
- Column temperature: 35°
- Flow rate: 1.5 mL/min
- Injection volume: 20 µL
- System suitability
 - Samples: System suitability solution and Standard solution [NOTE—The relative retention times for pseudoephedrine and ephedrone are 1.0 and 1.2, respectively (System suitability solution); and for fexofenadine, fexofenadine related compound A, and decarboxylated degradant 1.0, 1.2, and 3.1, respectively (Standard solution).]

Suitability requirements

Resolution: NLT 1.5 between pseudoephedrine and ephedrone, *System suitability solution*; NLT 2.0 between fexofenadine and fexofenadine related compound A, *Standard solution*

¹ Available from USP as USP Fexofenadine Related Compound C ^ARS, _(RB 1-Jul-2018) Cat# 1270446.

Relative standard deviation: NMT 1.0% for replicate injections based on the pseudoephedrine peak, *System suitability solution;* NMT 1.0% for replicate injections based on the fexofenadine peak, *Standard solution* **Analysis**

Samples: Standard solution and Sample solution Calculate separately the percentage of the labeled amount of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCI$) and pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCI$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_{U} = peak response of either fexofenadine or pseudoephedrine from the Sample solution

r_s = peak response of either fexofenadine or pseudoephedrine from the *Standard solution*

- C_s = concentration of either USP Fexofenadine Hydrochloride RS or USP Pseudoephedrine Hydrochloride RS in the *Standard solution* (mg/mL)
- C_U = nominal concentration of either fexofenadine hydrochloride or pseudoephedrine hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 93.0%–107.0%

• **Procedure 2:** Use this procedure for Tablets labeled to meet *Dissolution Test 5*.

Buffer: Dissolve 6.8 g of sodium acetate and 16.22 g of sodium 1-octanesulfonate in water, and dilute with water to 1 L. Adjust with glacial acetic acid to a pH of 4.0. **Mobile phase:** Methanol and *Buffer* (13:7)

- System suitability solution: Transfer 60 mg of USP Pseudoephedrine Hydrochloride RS to a 50-mL volumetric flask. Add 10 mL of hydrogen peroxide, and swirl the flask. Cover the flask opening with aluminum foil, and heat in an oven at 90° for 4 h. Add 35 mL of *Mobile phase*, and cool to room temperature. Dilute with *Mobile phase* to volume. The degradation of pseudoephedrine hydrochloride by this process produces the related compound ephedrone.
- **Related compounds stock solution:** 0.225 mg/mL each of USP Fexofenadine Related Compound A RS and decarboxylated degradant, prepared as follows. Dissolve USP Fexofenadine Related Compound A RS and decarboxylated degradant in a volume of methanol, and dilute with *Buffer* to obtain a ratio of methanol to *Buffer* of 13:5. Dilute with *Buffer* to obtain the required concentrations of the components.
- **Related compounds solution:** 0.0113 mg/mL each of USP Fexofenadine Related Compound A RS and decarboxylated degradant from *Related compounds stock solution* in *Mobile phase*
- **Standard stock solution:** 0.36 mg/mL of USP Fexofenadine Hydrochloride RS and 0.48 mg/mL of USP Pseudoephedrine Hydrochloride RS in *Mobile phase*
- **Standard solution:** 0.096 mg/mL of USP Pseudoephedrine Hydrochloride RS, 0.072 mg/mL of USP Fexofenadine Hydrochloride RS, and 0.002 mg/mL each of USP Fexofenadine Related Compound A RS and decarboxylated degradant, prepared as follows. Transfer 10 mL of *Standard stock solution* and 8 mL of *Related compounds solution* to a 50-mL volumetric flask, and dilute with *Mobile phase* to volume.
- Sample stock solution: Nominally equivalent to 0.36 mg/mL of fexofenadine hydrochloride and 0.48 mg/mL of pseudoephedrine hydrochloride, prepared as follows. Crush NLT 10 Tablets into small pieces in a mortar, transfer the composite to a 500-mL volumetric flask, and

add 325 mL of methanol. Shake by mechanical means for at least 30 min, and sonicate for at least an additional 35 min. Add 100 mL of *Buffer*, sonicate for 45 min, cool to room temperature, and allow to stand for 16 h without mechanical shaking. Dilute with *Buffer* to volume. Pass a portion of this solution through a suitable filter of 0.45µm or finer pore size. Transfer 5 mL of the filtrate to a 50mL volumetric flask, and dilute with *Buffer* to volume.

- **Sample solution:** 0.072 mg/mL and 0.096 mg/mL of fexofenadine hydrochloride and pseudoephedrine hydrochloride, respectively, in *Mobile phase*, from the *Sample stock solution*
- Chromatographic system
 - (See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 5-cm; 5-µm packing L6 connected in series to a 4.6-mm × 25-cm; 5-µm packing L11

Column temperature: 35°

Flow rate: 1.5 mL/min **Injection volume:** 20 µL

Injection volume: 20

System suitability

- Samples: System suitability solution and Standard solution Suitability requirements
- **Resolution:** NLT 2.0 between pseudoephedrine and ephedrone, *System suitability solution*; NLT 2.0 between fexofenadine and fexofenadine related compound A, *Standard solution*

Relative standard deviation: NMT 1.0% for replicate injections based on the pseudoephedrine peak, *System suitability solution;* NMT 1.0% for replicate injections based on the fexofenadine peak, *Standard solution* advess

- Analysis
- **Samples:** Standard solution and Sample solution Calculate separately the percentage of the labeled amount of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCI$) and pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCI$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

- *r_u* = peak response of either fexofenadine or pseudoephedrine from the *Sample solution*
- r_s = peak response of either fexofenadine or pseudoephedrine from the *Standard solution*
- C_s = concentration of either USP Fexofenadine Hydrochloride RS or USP Pseudoephedrine Hydrochloride RS in the *Standard solution* (mg/mL)
- C_U = nominal concentration of either fexofenadine hydrochloride or pseudoephedrine hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: 93.0%–107.0%

PERFORMANCE TESTS

Change to read:

- **Dissolution** (711)
- Test 1 Medium: 0.001 N hydrochloric acid; 900 mL
- Apparatus 2: 50 rpm
- Times

Fexofenadine hydrochloride: 15 and 45 min

Pseudoephedrine hydrochloride: 45 min; 3, 5, and 12 h

Solution A: 7.0 mg/mL of monobasic sodium phosphate monohydrate in water. Adjust with 85% phosphoric acid to a pH of 2.00 ± 0.05 .

Mobile phase: Acetonitrile and *Solution A* (9:11) **Standard solution:** Dissolve quantities of USP

Standard solution: Dissolve quantities of USP Fexofenadine Hydrochloride RS and USP Pseudoephedrine Hydrochloride RS in *Medium*, and dilute to obtain a solution containing known concentrations similar to those expected in the *Sample solution*. [NOTE—A small amount of methanol, NMT 0.5% of the total volume, can be used to dissolve the fexofenadine hydrochloride.]

Sample solution: Pass a portion of the solution under test through a suitable nylon filter of 0.45-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; packing L6 **Flow rate:** 1 mL/min

Injection volume: 10 µL

System suitability

Sample: Standard solution

- Suitability requirements
- **Resolution:** NLT 3.0 between fexofenadine and pseudoephedrine
- Tailing factor:
 NMT 1.5 for fexofenadine and pseudoephedrine
- Relative standard deviation: NMT 2.0% Analysis
- **Samples:** Standard solution and Sample solution Calculate the percentages of the labeled amounts of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCI$) and pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCI$) dissolved.

Tolerances

Fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$): NLT 65% (*Q*) of the labeled amount is dissolved in 15 min, and NLT 80% (*Q*) of the labeled amount is dissolved in 45 min.

Pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCI$): See *Table 1*.

Time	Amount Dissolved (%)
45 min	NMT 36
3 h	45–69
5 h	61–80
12 h	NLT 80

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to *Dissolution* (711), *Acceptance Table 2*.

Test 2: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 2*. **Medium:** 0.001 N hydrochloric acid; 900 mL **Apparatus 2:** 50 rpm

Apparatus . Times

Fexofenadine hydrochloride: 45 min

- **Pseudoephedrine hydrochloride:** 30 min; 2, 4, and 12 h
- Solution A: 2.7 mg/mL of monobasic potassium phosphate and 2.2 mg/mL of sodium 1-octanesulfonate in water. Adjust with phosphoric acid to a pH of 2.50 \pm 0.05.
- **Mobile phase:** Methanol, acetonitrile, and *Solution A* (3:3:4)

- **Fexofenadine standard stock solution:** Transfer 66 mg of USP Fexofenadine Hydrochloride RS to a 100-mL volumetric flask. Add 10 mL of methanol, and swirl until dissolved. Add 50 mL of *Medium*, and mix. Allow the solution to equilibrate to room temperature, and dilute with *Medium* to volume.
- **Pseudoephedrine standard stock solution:** Transfer 66 mg of USP Pseudoephedrine Hydrochloride RS to a 100-mL volumetric flask. Add 10 mL of methanol, and swirl until dissolved. Add 50 mL of *Medium*, and mix. Allow the solution to equilibrate to room temperature, and dilute with *Medium* to volume.
- **Standard solution:** 66 µg/mL of USP Fexofenadine Hydrochloride RS and 132 µg/mL of USP Pseudoephedrine Hydrochloride RS from a mixture of *Fexofenadine standard stock solution* and *Pseudoephedrine standard stock solution* diluted with *Medium*
- Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.
- Chromatographic system (See Chromatography (621), System Suitability.)
- Mode: LC
- Detector: UV 215 nm

Column: 4.6-mm × 25-cm; 5-µm packing L7

Flow rate: 1.5 mL/min **Injection volume:** 10 µL

System suitability

- Sample: Standard solution
- Suitability requirements
 - **Resolution:** NLT 2.0 between fexofenadine and pseudoephedrine
 - Tailing factor:
 NMT 2.0 for fexofenadine and NMT 2.5 for pseudoephedrine
 - **Relative standard deviation:** NMT 2.0% for both peaks

Analysis

- **Samples:** Standard solution and Sample solution Calculate the percentages of the labeled amounts of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCI$) and pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCI$) dissolved.
- Tolerances
- **Fexofenadine hydrochloride** ($C_{32}H_{39}NO_4 \cdot HCI$): NLT 80% (*Q*) of the labeled amount is dissolved in 45 min. **Pseudoephedrine hydrochloride** ($C_{10}H_{15}NO \cdot HCI$): See *Table 2*.

Table 2		
---------	--	--

	-
Time	Amount Dissolved (%)
30 min	NMT 35
2 h	38–58
4 h	56–76
12 h	NLT 80

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to *Dissolution* (711), *Acceptance Table 2*.

Test 3: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 3*. **Medium:** 0.001 N hydrochloric acid; 900 mL **Apparatus 2:** 50 rpm

Times

Fexofenadine hydrochloride: 30 min

Pseudoephedrine hydrochloride: 0.5, 2, 4, and 12 h

Buffer solution: 6.64 g/L of monobasic sodium phosphate in water. Adjust with phosphoric acid to a pH of 2.50 ± 0.05.

Mobile phase: Buffer solution and acetonitrile (3:2)

Standard solution: [NOTE—A small amount of methanol, not exceeding 0.5% of the final total volume, can be used to dissolve fexofenadine hydrochloride.] Prepare a solution in Medium containing known concentrations of USP Fexofenadine Hydrochloride RS and USP Pseudoephedrine Hydrochloride RS similar to those expected in the solution under test.

Sample solution: Pass a portion of the solution under test through a suitable PVDF or nylon filter of 0.45-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC Detector: UV 210 nm

- Column: 4.6-mm × 25-cm; packing L1
- Flow rate: 2.5 mL/min

Injection volume: 10 µL

System suitability

- Sample: Standard solution
- Suitability requirements

Tailing factor: NMT 2.0 for fexofenadine and pseudoephedrine

Relative standard deviation: NMT 2.0% for both peaks Analysis

Samples: Standard solution and Sample solution Calculate the percentages of the labeled amounts of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$) and pseudoephedrine hydrochloride (C₁₀H₁₅NO · HCl) dissolved.

Tolerances

Fexofenadine hydrochloride (C₃₂H₃₉NO₄ · HCl): NLT 80% (Q) of the labeled amount is dissolved in 30 min. **Pseudoephedrine hydrochloride** (C₁₀H₁₅NO · HCl): See Table 3.

Ta	ble	3

Time (h)	Amount Dissolved (%)		
0.5	13–33		
2	35–55		
4	50–70		
12	NLT 80		

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to Dissolution (711), Acceptance Table 2.

Test 4: For products labeled with a dosing interval of 24 h. If the product complies with this test, the labeling indicates that the product meets USP Dissolution Test 4. Medium: 0.001 N hydrochloric acid; 900 mL Apparatus 2: 50 rpm

Times

Fexofenadine hydrochloride: 30 min

Pseudoephedrine hydrochloride: 3, 7, and 23 h Determine the percentages of the labeled amounts of fexofenadine hydrochloride and pseudoephedrine hydrochloride dissolved by using the chromatographic procedure described in Test 1.

Tolerances

Fexofenadine hydrochloride (C₃₂H₃₉NO₄ · HCl): NLT 80% (Q) of the labeled amount is dissolved in 30 min. **Pseudoephedrine hydrochloride** ($C_{10}H_{15}NO \cdot HCI$): See Table 4.

Table 4

Time (h)	Amount Dissolved (%)		
3	10–30		
7	35–65		
23	NLT 80		

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to Dissolution (711), Acceptance Table 2.

Test 5: For products labeled with a dosing interval of 24 h. If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 5*. Medium: 0.001 N hydrochloric acid; 900 mL deaerated

Apparatus 2: 50 rpm, with sinkers. [NOTE—A suitable sinker is available as catalog number CAPWST-31 from www.gla-llc.com.]

Times

Fexofenadine hydrochloride: 15 and 45 min Pseudoephedrine hydrochloride: 3, 7, and 23 h **Buffer:** 4.1 g/L of anhydrous sodium acetate in water.

Adjust with glacial acetic acid to a pH of 3.6 ± 0.1 . Mobile phase: Methanol and Buffer (60:40)

Standard solution: Prepare a solution in Medium containing 0.20 mg/mL of USP Fexofenadine Hydrochloride RS and 0.27 mg/mL of USP

Pseudoephedrine Hydrochloride RS. Sonicate to dissolve. Sample solution: Pass a portion of the solution under

- test through a suitable filter of 0.45-µm pore size. Chromatographic system
- (See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 10-cm; 5-µm packing L9

Column temperature: 40°

Flow rate: 2 mL/min

Injection volume: 50 µL

System suitability

Sample: Standard solution

[NOTE—The relative retention times for fexofenadine and pseudoephedrine are 0.45 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between fexofenadine and pseudoephedrine

Tailing factor: NMT 2.0 for fexofenadine and pseudoephedrine

Relative standard deviation: NMT 1.5% for fexofenadine and pseudoephedrine

Analysis

Samples: Standard solution and Sample solution Calculate the concentration (C_i) of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$) in the sample withdrawn from the vessel at each time point (i) shown in Table 5:

$$\text{Result}_i = (r_U/r_S) \times C_S$$

r _u	= peak response of fexofenadine from the
	Sample solution

- r_s = peak response of fexofenadine from the Standard solution
- C_s = concentration of USP Fexofenadine Hydrochloride RS in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount (Q_i) of fexofenadine hydrochloride $(C_{32}H_{39}NO_4 \cdot HCI)$ dissolved at each time point (*i*) shown in *Table 5*:

$$\operatorname{Result}_{1} = C_{7} \times V \times (1/L) \times 100$$
$$\operatorname{Result}_{2} = \{ [C_{2} \times (V - V_{3})] + (C_{7} \times V_{3}) \} \times (1/L) \times 100$$

- C_i = concentration of fexofenadine hydrochloride in the portion of sample withdrawn at time point (*i*) (mg/mL)
- V = volume of *Medium*, 900 mL
- L = label claim for fexofenadine hydrochloride (mg/Tablet)
- *V*_s = volume of the *Sample solution* withdrawn from the *Medium* (mL)

Calculate the concentration (C_i) of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCI$) in the sample withdrawn from the vessel at each time point (*i*) shown in *Table 6*:

$$\text{Result}_i = (r_U/r_S) \times C_S$$

- r_{U} = peak response of pseudoephedrine from the Sample solution
- r_s = peak response of pseudoephedrine from the Standard solution
- C_s = concentration of USP Pseudoephedrine Hydrochloride RS in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount (Q_i) of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCI$) dissolved at each time point (*i*) shown in *Table 6*:

$$\begin{aligned} & \text{Result}_{1} = C_{1} \times V \times (1/L) \times 100 \\ & \text{Result}_{2} = \{ [C_{2} \times (V - V_{3})] + (C_{1} \times V_{3}) \} \times (1/L) \times 100 \\ & \text{Result}_{3} = (\{C_{3} \times [V - (2 \times V_{3})]\} + [(C_{2} + C_{1}) \times V_{3}]) \times (1/L) \times 100 \end{aligned}$$

- *C_i* = concentration of pseudoephedrine hydrochloride in the portion of sample withdrawn at time point (*i*) (mg/mL)
- *V* = volume of *Medium*, 900 mL
- L = label claim for pseudoephedrine hydrochloride (mg/Tablet)
- V_s = volume of the *Sample solution* withdrawn from the *Medium* (mL)

Tolerances

Fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCI$): See *Table 5*.

Та	hl	e	5
		-	-

Time Point (<i>ì</i>)	Time (min)	Amount Dissolved (%)
1	15	NLT 60 (Q)
2	45	NLT 75 (Q)

Pseudoephedrine hydrochloride (C ₁₀ H ₁₅ NO · HCl):	See
Table 6.	

Table 6

Time Point (i)	Time (h)	Amount Dissolved (%)		
1	3	10–34		
2	7	35–68		
3	23	NLT 80		

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to Dissolution (711), Acceptance Table 2. Test 6: If the product complies with this test, the labeling indicates that the product meets USP Dissolution Test 6. Medium: 0.001 N hydrochloric acid; 900 mL Apparatus 2: 50 rpm Times Fexofenadine hydrochloride: 45 min Pseudoephedrine hydrochloride: 30 min; 2, 4, and 12 Solution A: 7 g/L of monobasic sodium phosphate in water. Adjust with 85% phosphoric acid to a pH of 2.00. Mobile phase: Acetonitrile and Solution A (45:55) Standard solution: 0.07 mg/mL of USP Fexofenadine Hydrochloride RS and 0.13 mg/mL of USP Pseudoephedrine Hydrochloride RS, prepared as follows. Dissolve appropriate quantities of USP Fexofenadine Hydrochloride RS and USP Pseudoephedrine Hydrochloride RS in a small amount of methanol, NMT 0.8% of the final volume, and add 40% of the final volume of Medium. Sonicate to dissolve and dilute with Medium to volume. Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. Chromatographic system (See Chromatography (621), System Suitability.) Mode: LC Detector: UV 210 nm Column: 4.6-mm × 25-cm; 10-µm packing L6 Flow rate: 1 mL/min Injection volume: 10 µL System suitability Sample: Standard solution Suitability requirements Resolution: NLT 3.0 between fexofenadine and pseudoephedrine peaks Tailing factor: NMT 2.0 for both fexofenadine and pseudoephedrine peaks Relative standard deviation: NMT 2.0% for both peaks Analysis Samples: Standard solution and Sample solution Calculate the percentage of the labeled amount of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$) dissolved: Result = $(r_U/r_S) \times C_S \times V \times (1/L) \times 100$ = peak response of fexofenadine from the r_{U} Sample solution

- = peak response of fexofenadine from the Standard solution
- = concentration of USP Fexofenadine
 Hydrochloride RS in the Standard solution (mg/mL)

© 2018 The United States Pharmacopeial Convention All Rights Reserved. C202175-M33077-CHM62015, Rev. 00 20180727

rs

Cs

6 Fexofenadine

V = volume of *Medium*, 900 mL

L = label claim for fexofenadine hydrochloride (mg/Tablet)

Calculate the concentration (C_i) of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCI$) in the sample withdrawn from the vessel at each time point (*i*) shown in *Table 7*:

$$\text{Result}_i = (r_U/r_S) \times C_S$$

- r_{U} = peak response of pseudoephedrine from the Sample solution
- *r*_s = peak response of pseudoephedrine from the *Standard solution*
- C_s = concentration of USP Pseudoephedrine Hydrochloride RS in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) dissolved at each time point (*i*) shown in *Table 7*:

$$\begin{aligned} & \text{Result}_{1} = C_{1} \times V \times (1/L) \times 100 \\ & \text{Result}_{2} = \{ [C_{2} \times (V - V_{3})] + (C_{1} \times V_{3}) \} \times (1/L) \times 100 \\ & \text{Result}_{3} = (\{C_{3} \times [V - (2 \times V_{3})]\} + [(C_{2} + C_{1}) \times V_{3}]) \times (1/L) \times 100 \\ & \text{Result}_{4} = (\{C_{4} \times [V - (3 \times V_{3})]\} + [(C_{3} + C_{2} + C_{1}) \times V_{3}]) \times (1/L) \times 100 \end{aligned}$$

- C_i = concentration of pseudoephedrine hydrochloride in the portion of sample withdrawn at time point (*i*) (mg/mL) V = volume of *Medium*, 900 mL
- L = label claim for pseudoephedrine hydrochloride (mg/Tablet)

 V_s = volume of the *Sample solution* withdrawn from the *Medium* (mL)

Tolerances

Fexofenadine hydrochloride $(C_{32}H_{39}NO_4 \cdot HCI)$: NLT 80% (*Q*) of the labeled amount is dissolved. **Pseudoephedrine hydrochloride** $(C_{10}H_{15}NO \cdot HCI)$: See *Table 7*.

Га	ble	7

Time Point (i)	Time (h)	Amount Dissolved (%)
1	0.5	NMT 35
2	2	45–65
3	4	60–80
4	12	NLT 80

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to *Dissolution* (711), *Acceptance Table 2*.

 Test 7: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 7*.
 Medium: 0.001 N hydrochloric acid; 900 mL
 Apparatus 2: 50 rpm

Times

Fexofenadine hydrochloride: 20 min

Pseudoephedrine hydrochloride: 45 min; ▲3,

5,_{▲ (RB 1-Aug-2018)} and 12 h

- **Solution A:** 7.0 g/L of monobasic sodium phosphate monohydrate in water. Adjust with phosphoric acid to a pH of 2.0.
- Mobile phase: Acetonitrile and Solution A (45:55)
- Standard stock solution A: 0.7 mg/mL of USP Fexofenadine Hydrochloride RS, prepared as follows. Transfer a quantity of USP Fexofenadine Hydrochloride RS to a suitable volumetric flask. Add methanol, NMT ▲5% (RB 1-Aug-2018) of the total volume, and sonicate to dissolve. Dilute with *Medium* to volume.
- **Standard stock solution B:** 1.3 mg/mL of USP Pseudoephedrine Hydrochloride RS in *Medium*. Sonicate to dissolve if necessary.

to dissolve if necessary. **Standard solution:** 0.07 mg/mL of USP Fexofenadine Hydrochloride RS and 0.13 mg/mL of USP Pseudoephedrine Hydrochloride RS in *Medium*, from *Standard stock solution A* and *Standard stock solution B*

- **Sample solution:** Withdraw and pass a portion of the solution under test through a suitable nylon filter of 0.45-µm pore size. Replace the portion removed with the same volume of *Medium*.
- Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 10-µm packing L6 **Flow rate:** 1 mL/min

Injection volume: 10 µL

Run time: NLT 1.5 times the retention time of the pseudoephedrine peak

- System suitability
- Sample: Standard solution
- Suitability requirements
 - **Resolution:** NLT 3.0 between fexofenadine and pseudoephedrine
 - **Tailing factor:** NMT 1.5 for fexofenadine and pseudoephedrine
- Relative standard deviation: NMT 2.0% Analysis

Samples: Standard solution and Sample solution Calculate the percentage of the labeled amount of fexofenadine hydrochloride $(C_{32}H_{39}NO_4 \cdot HCI)$ dissolved:

Result =
$$(r_U/r_S) \times C_S \times V \times (1/L) \times 100$$

- r_{U} = peak response of fexofenadine from the Sample solution
- r_{s} = peak response of fexofenadine from the Standard solution
- C_s = concentration of USP Fexofenadine Hydrochloride RS in the *Standard solution* (mg/mL)
- V = volume of *Medium*, 900 mL
 - = label claim for fexofenadine hydrochloride (mg/Tablet)

Calculate the concentration (C_i) of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCI$) in the sample withdrawn from the vessel at each time point (*i*) shown in *Table 8*:

$\text{Result}_i = (r_U/r_S) \times C_S$

- r_{U} = peak response of pseudoephedrine from the Sample solution
- *r*_s = peak response of pseudoephedrine from the *Standard solution*

© 2018 The United States Pharmacopeial Convention All Rights Reserved. C202175-M33077-CHM62015, Rev. 00 20180727

L

= concentration of USP Pseudoephedrine Cs Hydrochloride RS in the Standard solution (mq/mL)

[NOTE—Result₁ is used as calculation correction (C_1) for subsequent withdrawal time points.] Calculate the percentage of the labeled amount of pseudoephedrine hydrochloride (C10H15NO·HCl) dissolved at each time point (i) shown in Table 8:

 $\text{Result}_1 = C_1 \times V \times (1/L) \times 100$ $\operatorname{Result}_2 = \left[(C_2 \times V) + (C_1 \times V_s) \right] \times (1/L) \times 100$ $\text{Result}_{3} = \{(C_{3} \times V) + [(C_{2} + C_{1}) \times V_{5}]\} \times (1/L) \times 100$ $\text{Result}_4 = \{(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_5]\} \times (1/L) \times 100$ Result₅ = { $(C_5 \times V) + [(C_4 + C_3 + C_2 + C_1) \times V_5]$ } × (1/L) × 100

- C_i = concentration of pseudoephedrine hydrochloride in the portion of sample withdrawn at time point (*i*) (mg/mL)
 volume of *Medium*, 900 mL
 label claim for pseudoephedrine hydrochloride (mg/Tablet) V
- L
- V_{s} = volume of the Sample solution withdrawn from the *Medium* (mL)

Tolerances

Fexofenadine hydrochloride (C₃₂H₃₉NO₄ · HCl): NLT 80% (Q) of the labeled amount is dissolved in 20 min. **Pseudoephedrine hydrochloride** ($C_{10}H_{15}NO \cdot HCI$): See Table 8.

Тъ	h	6	Q
Ia	v	IC.	0

Time Point (i)	Time	Amount Dissolved (%)
1ª	20 min	_
2	45 min	NMT 34
3	3 h	41–61
4	5 h	57–77
5	12 h	NLT 80

^a The first time point is used as calculation correction (C_1) for subsequent withdrawal time points.

> The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to Dissolution (711),

Acceptance Table 2.▲ (RB 1-Jul-2018) • UNIFORMITY OF DOSAGE UNITS (905): Meet the requirements

IMPURITIES

[NOTE—On the basis of knowledge of the product, perform either: (a) Organic Impurities, Procedure 1 or (b) Organic Impurities, Procedure 2; Organic Impurities, Procedure 3; and Organic Impurities, Procedure 4.]

Change to read:

- ORGANIC IMPURITIES, PROCEDURE 1
- Buffer, Mobile phase, Diluent, System suitability solution, Related compounds stock solution, Related compounds solution, Standard stock solution, Standard solution, and Chromatographic system: Proceed as directed in the Assay, Procedure 1.

- Sample solution: Use the Sample stock solution, prepared as directed in the Assay, Procedure 1.
- Reference solution: Use the Sample solution, prepared as directed in the Assay, Procedure 1.

System suitability

Samples: System suitability solution and Standard solution [NOTE—The relative retention times for

pseudoephedrine and ephedrone are 1.0 and 1.2, respectively (System suitability solution); and for fexofenadine, fexofenadine related compound A, and decarboxylated degradant are 1.0, 1.2, and 3.1, respectively (Standard solution).]

Suitability requirements

- Resolution: NLT 1.7 between pseudoephedrine and ephedrone, System suitability solution; NLT 2.0 between fexofenadine and fexofenadine related compound A, Standard solution
- **Relative standard deviation:** NMT 1.0% for replicate injections based on the pseudoephedrine peak, System suitability solution; NMT 1.0% for replicate injections based on the fexofenadine peak and NMT 3.0% based on the individual peaks for fexofenadine related compound A and decarboxylated degradant, Standard solution

Analysis

rs

Samples: Sample solution and Reference solution Calculate the percentage of fexofenadine related compound A and decarboxylated degradant in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

- = individual peak area response of either r_U fexofenadine related compound A or decarboxylated degradant from the Sample solution
 - = peak area response of fexofenadine related compound A or decarboxylated degradant from the Standard solution
- Cs = concentration of either USP Fexofenadine Related Compound A RS or decarboxylated degradant in the Standard solution (mg/mL)
- C_{U} = nominal concentration of fexofenadine hydrochloride in the Sample solution (mg/mL)

Calculate the percentage of ephedrone in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

- = peak height response of ephedrone from the r_U Sample solution
- = peak height response of pseudoephedrine rs from the Standard solution
- = concentration of USP Pseudoephedrine C_s Hydrochloride RS in the Standard solution (mq/mL)
- C_U = nominal concentration of pseudoephedrine hydrochloride in the Sample solution (mg/mL)

$$F$$
 = relative response factor for ephedrone, 0.394

Calculate the percentage of any other impurities in the portion of Tablets taken:

$$\text{Result} = r_U / [(F \times r_S + r_T)] \times 100$$

- = individual peak area response of an individual r_U unknown impurity from the Sample solution F
 - = difference in concentration between the Sample solution and the Reference solution, 25

- r_s = peak area response of fexofenadine
- hydrochloride from the *Reference* solution
- r_{τ} = sum of the peak area responses of all unknown impurities from the *Sample solution*

[Note—Disregard any peak below 0.05%.] Acceptance criteria: See ▲ *Table 9*.

Table 9 ▲ (RB 1-Jul-2018)			
Name	Relative Retention Time	Acceptance Criteria, NMT (%)	
Pseudoephedrine	1.0	_	
Fexofenadine	1.0	_	
Ephedrone	1.2ª	0.2	
Fexofenadine related compound A	1.2 ^b	0.4	
Tertiary dehydrated impurity ^c	1.8	0.2	
Decarboxylated degradant ^d	3.1 ^b	0.2	
Any other individual impurity	_	0.2	
Total impurities	_	0.8	

^a Relative to pseudoephedrine.

^b Relative to fexofenadine.

^c 4-[4{4-(Diphenylmethylene)-1-piperidinyl}-1-hydroxybutyl]-2,2-dimethyl phenyl acetic acid.

^d (±)-4-(1-Hydroxy-4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]-butyl]isopropylbenzene.

Change to read:

• ORGANIC IMPURITIES, PROCEDURE 2

- **Solution A:** Dissolve 2.7 g of monobasic potassium phosphate and 2.2 g of sodium 1-octanesulfonate in 1000 mL of water. Adjust with phosphoric acid to a pH of 2.50 ± 0.05 .
- Mobile phase: Methanol and Solution A (3:2)

Standard stock solution: 0.18 mg/mL of USP Fexofenadine Hydrochloride RS in *Mobile phase*

- Standard solution: 0.0108 mg/mL of USP Fexofenadine Hydrochloride RS in *Mobile phase*, prepared from the *Standard stock solution*
- Sensitivity solution: 0.54 µg/mL of USP Fexofenadine Hydrochloride RS in *Mobile phase*, prepared from the *Standard solution*
- **Sample solution:** Weigh and finely powder 9 Tablets, and quantitatively transfer the ground powder to a 500-mL volumetric flask, with the aid of 200 mL of *Mobile phase*. Sonicate for 10 min, and add an additional 100 mL of *Mobile phase*. Shake by mechanical means for 30 min, and dilute with *Mobile phase* to volume. Pass a portion of the solution through a polypropylene or polysulfone membrane filter of 0.45-µm pore size, and discard at least the first 10 mL of the filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1 mL/min

Injection volume: 20 µL

[NOTE—The run time is 6 times the retention time of fexofenadine.]

System suitability

Samples: Standard solution and Sensitivity solution Suitability requirements **Relative standard deviation:** NMT 5.0%, *Standard solution*

Signal-to-noise ratio: NLT 10, Sensitivity solution Analysis

Samples: *Standard solution* and *Sample solution* Calculate the amount of each impurity as a percentage of the label claim of fexofenadine hydrochloride in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

- = peak response of individual impurities from the Sample solution
- = peak response of fexofenadine from the Standard solution
- C_s = concentration of USP Fexofenadine Hydrochloride RS in the *Standard solution* (mg/mL)
- C_U = nominal concentration of fexofenadine hydrochloride in the Sample solution (mg/mL) F = relative response factor for each impurity (see
 - = relative response factor for each impurity (see ▲ Table 10) ▲ (RB 1-Jul-2018)

٥\

Acceptance criteria: See ▲ Table 10.

r_u

rs

Table 10 _{▲ (RB 1-Jul-2}

(RB 1-Jul-2018)				
Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)	
Fexofenadine	1.0	1.0	—	
Meta fexofenadine	1.14	1.0	0.2	
Fexofenadine related compound A	1.38	0.83	0.4	
Tertiary dehydrated impurity ^a	2.25	1.3	0.2	
Individual unspecified impurity	_	1.0	0.2	
Total impurities	—	—	0.5	

^a 4-[4{4-(Diphenylmethylene)-1-piperidinyl}-1-hydroxybutyl]-2,2-dimethyl phenyl acetic acid.

• ORGANIC IMPURITIES, PROCEDURE 3

Solution A: 4 mg/mL of ammonium acetate **Mobile phase:** Methanol and *Solution A* (19:1)

- Diluent: Methanol and water (1:1)
- Standard stock solution: 0.18 mg/mL of USP Pseudoephedrine Hydrochloride RS in *Diluent*
- **Standard solution:** 0.0216 mg/mL of USP Pseudoephedrine Hydrochloride RS in *Diluent*, prepared from the *Standard stock solution*
- **Sensitivity solution:** 1.08 μg/mL of USP Pseudoephedrine Hydrochloride RS in *Diluent*, prepared from the *Standard solution*
- **Sample solution:** Weigh and finely powder 9 Tablets, and quantitatively transfer the ground powder to a 500-mL volumetric flask, with the aid of 200 mL of *Diluent*. Sonicate for 10 min, and add an additional 100 mL of *Diluent*. Shake by mechanical means for 30 min, dilute with *Diluent* to volume, and mix. Pass a portion of the solution through a polypropylene or polysulfone membrane filter of 0.45-µm pore size, and discard at least the first 10 mL of the filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC

Tailing factor: NMT 2.0, Standard solution

Detector: UV 215 nm **Column:** 4.6-mm × 25-cm; 5-μm packing L3 **Flow rate:** 1 mL/min **Injection volume:** 20 μL

System suitability

Samples: Standard solution and Sensitivity solution Suitability requirements

Tailing factor: NMT 2.0, Standard solution Relative standard deviation: NMT 5.0%, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution Analysis

Samples: Standard solution and Sample solution

Calculate the amount of each impurity as a percentage of the label claim of pseudoephedrine hydrochloride in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

- *r*_U = peak response of individual impurities from the *Sample solution*
- r_s = peak response of pseudoephedrine from the Standard solution
- C_s = concentration of USP Pseudoephedrine Hydrochloride RS in the *Standard solution* (mg/mL)
- C_U = nominal concentration of pseudoephedrine hydrochloride in the Sample solution (mg/mL)
- F = relative response factor, equal to 0.52 for ephedrone (RRT, 0.85 relative to the pseudoephedrine peak) and 1 for all other impurities

Acceptance criteria

Individual impurities: NMT 0.2% for ephedrone; NMT 0.1% for any individual unspecified impurity

Change to read:

• ORGANIC IMPURITIES, PROCEDURE 4

Solution A: Dissolve 2.7 g of monobasic potassium phosphate and 2.2 g of sodium 1-octanesulfonate in 1000 mL of water. Adjust with phosphoric acid to a pH of 2.50 ± 0.05 .

Solution B: Methanol and Solution A (2:3) Solution C: Methanol and Solution A (7:3) Mobile phase: See ▲Table 11.

Table 11▲ (RB 1-Jul-2018)				
Time (min)	Solution B (%)	Solution C (%)		
0	100	0		
40	100	0		
41	0	100		
65	0	100		
66	100	0		
90	100	0		

Diluent: Methanol and water (1:1)

Standard stock solution: 0.18 mg/mL of USP Benzoic Acid RS in *Diluent*

Standard solution: 0.0216 mg/mL of USP Benzoic Acid RS in *Diluent*, prepared from the *Standard stock solution*

Sensitivity solution: 1.08 μ g/mL of USP Benzoic Acid RS in *Diluent*, prepared from the *Standard solution*

Sample solution: Weigh and finely powder 9 Tablets, and quantitatively transfer the ground powder to a 500-mL volumetric flask, with the aid of 200 mL of *Diluent*. Sonicate for 10 min, and add an additional 100 mL of *Diluent*. Shake by mechanical means for 30 min, dilute with *Diluent* to volume, and mix. Pass a portion of the solution through a polypropylene or polysulfone membrane filter of 0.45-µm pore size, and discard at least the first 10 mL of the filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1 mL/min

Injection volume: 10 µL

System suitability

- Samples: Standard solution and Sensitivity solution Suitability requirements
- Tailing factor: NMT 2.0, Standard solution Relative standard deviation: NMT 5.0%, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution Analysis

Samples: Standard solution and Sample solution

Calculate the amount of each impurity as a percentage of the label claim of pseudoephedrine hydrochloride in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

- *r_u* = peak response of individual impurities from the *Sample solution*
- r_s = peak response of benzoic acid from the Standard solution
- C_s = concentration of USP Benzoic Acid RS in the Standard solution (mg/mL)
- C_U = nominal concentration of pseudoephedrine hydrochloride in the Sample solution (mg/mL)
- $F = \text{relative response factor for each impurity (see$ **Table 12**) (RB 1-Jul-2018)

Acceptance criteria

Individual impurities: See ▲ *Table 12*. ▲ (RB 1-Jul-2018) Total impurities: The combined total impurities from *Procedure 3* and *Procedure 4* is NMT 0.3%.

▲Table 12 (RB 1-Jul-2018)			
Name	Relative Retention Time	Relative Response Factorª	Acceptance Criteria, NMT(%)
Benzaldehyde	0.43	0.40	0.1
Benzoic acid	0.55	1.0	0.1
Ephedrone [♭]	0.97		—
Pseudoephedrine	1.0	0.52	—
Individual unspecified impurity	_	0.52 ^c	0.1

^a Response factors relative to benzoic acid.

^b Ephedrone is not quantitated in this method. A separate method is used for the quantitation of this impurity.

^c The response factor of pseudoephedrine relative to that of benzoic acid is used in the calculation of individual unspecified impurities.

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in well-closed containers, and store at controlled room temperature.

- **LABELING:** When more than one *Dissolution* test is given, the labeling states the test used only if *Test 1* is not used. If a test for *Organic Impurities* other than *Procedure 1* is used, the labeling states with which *Procedures* the article • USP REFERENCE STANDARDS (11)
- USP Benzoic Acid RS

- USP Fexofenadine Hydrochloride RS USP Fexofenadine Related Compound A RS Benzeneacetic acid, 4-[1-oxy-4-[4-(hydroxydiphenylmethyl)-1-piperidinyl]butyl]-α,αdimethyl. C₃₂H₃₇NO₄ 499.65
- USP Pseudoephedrine Hydrochloride RS