Dehydrated Alcohol

Type of Posting: Revision Bulletin
Posting Date: 17–Aug–2020
Official Date: 01–Sep–2020
Expert Committee: Excipient Monographs Expert Committee 2
Reason for Revision: Safety, Urgent

To address the serious hazards associated with the use of methanol-containing dehydrated alcohol, the Excipient Monographs Expert Committee 2 has revised the Dehydrated Alcohol Monograph. These revisions are consistent with a request from, and guidance issued by, the U.S. Food and Drug Administration (FDA).

The purpose for these revisions is to strengthen the Identification section of the monographs by including the test for Limit of Methanol as an additional Identification C test. This is intended to address the patient safety issue outlined in the Notice of Intent to Revise (NITR) posted on July 31, 2020 to alert stakeholders to this urgent matter and to announce the intended revisions. Additional information about this topic, including correspondence from the U.S FDA to USP and responses to Frequently Asked Questions, is available here.

The revisions to the Dehydrated Alcohol monograph include:

- **Under Identification**, a new Identification C: Limit of Methanol test is added. The test is referring to the methanol relevant sections of the currently official Organic Impurities test in the same monograph. The testing procedure and acceptance criterion for methanol remains unchanged. This is a USP local requirement indicated by the diamond symbols (⧫⧫). USP has informed the Pharmacopeial Discussion Group (PDG) of this revision. A note was also included within Identification C to emphasize that compliance of identity is determined by meeting the requirements for all the Identification tests in the monograph as shown below:
  
  [Note - This test must be performed to be in compliance with USP, in addition to Identification A and B above.]

- **Under Organic Impurities**, two Notes are added to the Standard solution A and to the Methanol calculation subsection under Analysis, to indicate that the information in these sections is referenced in Identification C. These Notes are also marked by the diamond symbols (⧫⧫).

As a note to stakeholders, USP Methyl Alcohol RS (item number 1424109) was evaluated by USP and found suitable for preparing Standard solution A and B. Please also note that USP Residual Solvent Class 2 – Methanol RS contains methanol as a solution in DMSO and is not suitable for this test.

The Dehydrated Alcohol Revision Bulletin supersedes the currently official monographs and will become official on September 1, 2020. A similar Revision Bulletin is also posted for Alcohol.

Should you have any questions, please contact Methanol-ID@usp.org.
Dehydrated Alcohol

Portions of this monograph that are national *USP* text, and are not part of the harmonized text, are marked with symbols (◆) to specify this fact.

Dehydrated Alcohol contains NLT 99.2% by weight, corresponding to NLT 99.5% by volume, at 15.56°, of C₂H₅OH.

**DEFINITION**

Dehydrated Alcohol contains NLT 99.2% by weight, corresponding to NLT 99.5% by volume, at 15.56°, of C₂H₅OH.

**IDENTIFICATION**

• A. It meets the requirements of the test for *Specific Gravity* (841).

• B. **Spectroscopic Identification Tests** (197), *Infrared Spectroscopy*: 197F or 197S. Neat.

*Add the following:*

• **C. Limit of Methanol**

[Note—This test must be performed to be in compliance with USP, in addition to Identification A and B above.]


Analysis: Proceed as directed in the *Organic Impurities* test, *Methanol calculation*.

Acceptance criteria: Meets the requirements in Table 2 for methanol.◆◆ (RB 1-Sep-2020)

**IMPURITIES**

• **Limit of Nonvolatile Residue**

Sample: 100 mL of Dehydrated Alcohol

Analysis: Evaporate the Sample in a tared dish on a water bath, and dry at 100°–105° for 1 h.

Acceptance criteria: The weight of the residue is NMT 2.5 mg.

*Change to read:*

• **Organic Impurities**

Sampling solution A: Substance to be examined

Sampling solution B: 300 µL/L of 4-methylpentan-2-ol in Sampling solution A

Standard solution A: 200 µL/L of methanol in Sampling solution A

◆◆[Note—To be prepared for use in Identification C.]◆◆ (RB 1-Sep-2020)

Sampling solution B: 10 µL/L of methanol and 10 µL/L of acetaldehyde in Sampling solution A

Standard solution C: 30 µL/L of acetal in Sampling solution A

Standard solution D: 2 µL/L of benzene in Sampling solution A

Chromatographic system

(See *Chromatography (621), System Suitability*.)

Mode: GC

Detector: Flame ionization

Column: 0.32-mm × 30-m fused-silica capillary; bonded with a 1.8-µm layer of phase G43
Temperatures
- Injection port: 200°
- Detector: 280°
- Column: See Table 1.

<table>
<thead>
<tr>
<th>Initial Temperature (°)</th>
<th>Temperature Ramp (°/min)</th>
<th>Final Temperature (°)</th>
<th>Hold Time at Final Temperature (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>240</td>
<td>10</td>
</tr>
</tbody>
</table>

Flow rate: 35 cm/s
Carrier gas: Helium
Injection volume: 1.0 µL

System suitability
- Sample: Standard solution B

Suitability requirements
- Resolution: NLT 1.5 between the first major peak (acetaldehyde) and the second major peak (methanol)

Analysis

Methanol calculation
- \[\text{Result} = \frac{r_U}{r_S} \]
- \( r_U \) = peak area of methanol from Sample solution A
- \( r_S \) = peak area of methanol from Standard solution A

Acetaldehyde calculation (sum of acetaldehyde and acetal)
- \[\text{Result} = \left\{\frac{A_E}{(A_T - A_E)} \times C_A\right\} + \left\{\frac{D_E}{(D_T - D_E)} \times C_D \times \left(\frac{M_{r1}}{M_{r2}}\right)\right\} \]
- \( A_E \) = peak area of acetaldehyde from Sample solution A
- \( A_T \) = peak area of acetaldehyde from Standard solution B
- \( C_A \) = concentration of acetaldehyde in Standard solution B (µL/L)
- \( D_E \) = peak area of acetal from Sample solution A
- \( D_T \) = peak area of acetal from Standard solution C
- \( C_D \) = concentration of acetal in Standard solution C (µL/L)
- \( M_{r1} \) = molecular weight of acetaldehyde, 44.05
\[ M_r^2 = \text{molecular weight of acetal, 118.2} \]

**Benzene calculation**

\[
\text{Result} = \left[ \frac{B_E}{(B_T - B_E)} \right] \times C_B
\]

- \( B_E \) = peak area of benzene from *Sample solution A*
- \( B_T \) = peak area of benzene from *Standard solution D*
- \( C_B \) = concentration of benzene in *Standard solution D* (µL/L)

*[Note—If necessary, the identity of benzene can be confirmed using another suitable chromatographic system (stationary phase with a different polarity).]*

**Any other impurity calculation**

\[
\text{Result} = \left( \frac{r_U}{r_M} \right) \times C_M
\]

- \( r_U \) = peak area of each impurity from *Sample solution B*
- \( r_M \) = peak area of 4-methylpentan-2-ol from *Sample solution B*
- \( C_M \) = concentration of 4-methylpentan-2-ol in *Sample solution B* (µL/L)

**Acceptance criteria:** See *Table 2.*

<table>
<thead>
<tr>
<th>Name</th>
<th>Acceptance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>NMT 0.5, corresponding to 200 µL/L</td>
</tr>
<tr>
<td>Acetaldehyde and acetal</td>
<td>NMT 10 µL/L, expressed as acetaldehyde</td>
</tr>
<tr>
<td>Benzene</td>
<td>NMT 2 µL/L</td>
</tr>
<tr>
<td>Sum of all other impurities&lt;sup&gt;a&lt;/sup&gt;</td>
<td>NMT 300 µL/L</td>
</tr>
</tbody>
</table>

<sup>a</sup> Disregard any peaks of less than 9 µL/L (0.03 times the area of the peak corresponding to 4-methylpentan-2-ol in the chromatogram obtained with *Sample solution B*).

**SPECIFIC TESTS**

- **Specific Gravity (841):** NMT 0.7962 at 15.56°, indicating NLT 99.2% of \( \text{C}_2\text{H}_5\text{OH} \) by weight.*

- **Ultraviolet Absorption**
  - **Analytical wavelength:** 235–340 nm
  - **Cell:** 5 cm
  - **Reference:** Water
  - **Acceptance criteria**
    - **Absorbance:** NMT 0.40 at 240 nm; NMT 0.30 between 250 and 260 nm; NMT 0.10 between 270 and 340 nm
    - **Curve:** The spectrum shows a steadily descending curve with no observable peaks or shoulders.

- **Clarity of Solution**
[NOTE—The Sample solution is to be compared to Standard suspension A and to water in diffused daylight 5 min after preparation of Standard suspension A.]

Hydrazine solution: 10 mg/mL of hydrazine sulfate in water. Allow to stand for 4–6 h.

Methenamine solution: Transfer 2.5 g of methenamine to a 100-mL glass-stoppered flask, add 25.0 mL of water, insert the glass stopper, and mix to dissolve.

Primary opalescent suspension: Transfer 25.0 mL of Hydrazine solution to the Methenamine solution in the 100-mL glass-stoppered flask. Mix, and allow to stand for 24 h. This suspension is stable for 2 months, provided it is stored in a glass container free from surface defects. The suspension must not adhere to the glass and must be well mixed before use.

Opalescence standard: Transfer 15.0 mL of the Primary opalescent suspension to a 1000-mL volumetric flask, and dilute with water to volume. This suspension should not be used beyond 24 h after preparation.

Standard suspension A: Dilute 5.0 mL of the Opalescence standard with water to 100.0 mL.

Standard suspension B: Dilute 10.0 mL of the Opalescence standard with water to 100.0 mL.

Sample solution A: Substance to be examined

Sample solution B: 1.0 mL of Sample solution A diluted with water to 20 mL. Allow to stand for 5 min before testing.

Blank: Water

Analysis

Samples: Standard suspension A, Standard suspension B, Sample solution A, Sample solution B, and Blank

Transfer a sufficient portion of Sample solution A and Sample solution B to separate test tubes of colorless, transparent, neutral glass with a flat base and an internal diameter of 15–25 mm to obtain a depth of 40 mm. Similarly transfer portions of Standard suspension A, Standard suspension B, and Blank to separate matching test tubes. Compare samples in diffused daylight, viewing vertically against a black background (see Visual Comparison (630)). The diffusion of light must be such that Standard suspension A can be readily distinguished from water, and Standard suspension B can be readily distinguished from Standard suspension A.

Acceptance criteria: Sample solution A and Sample solution B show the same clarity as that of water, or their opalescence is not more pronounced than that of Standard suspension A. ●

• Acidity or Alkalinity

Phenolphthalein solution: Dissolve 0.1 g of phenolphthalein in 80 mL of alcohol, and dilute with water to 100 mL.

Sample: 20 mL of Dehydrated Alcohol

Analysis: To the Sample add 20 mL of freshly boiled and cooled water and 0.1 mL of Phenolphthalein solution. The solution is colorless. Add 1.0 mL of 0.01 N sodium hydroxide.

Acceptance criteria: The solution is pink (30 µg/g, expressed as acetic acid).

• Color of Solution

Standard stock solution: Combine 3.0 mL of ferric chloride CS, 3.0 mL of cobaltous chloride CS, 2.4 mL of cupric sulfate CS, and 1.6 mL of dilute hydrochloric acid (10 mg/mL).

Standard solution: 1.0 mL of Standard stock solution, diluted with dilute hydrochloric acid (10 mg/mL) to 100 mL. Prepare the Standard solution immediately before use.

Sample solution: Substance to be examined

Blank: Water

Analysis

Samples: Standard solution, Sample solution, and Blank

Transfer a sufficient portion of each of the Samples to individual test tubes of colorless, transparent, neutral glass with a flat base and an internal diameter of 15–25 mm to obtain a depth of 40 mm.
Compare the Samples in diffused daylight, viewing vertically against a white background (see Visual Comparison (630)).

**Acceptance criteria:** The Sample solution has the appearance of water or is not more intensely colored than the Standard solution.

**ADDITIONAL REQUIREMENTS**

- **Packaging and Storage:** Preserve in tight containers, protected from light.
- **USP Reference Standards (11):**
  - USP Dehydrated Alcohol RS

---

**Page Information:**

Not Applicable

**DocID:**
© 2020 The United States Pharmacopeial Convention All Rights Reserved.