

Cyclobenzaprine Hydrochloride

Type of Posting	Revision Bulletin		
Posting Date	27–Dec–2019		
Official Date	01–May–2020		
Expert Committee	Chemical Medicines Monographs 4		
Reason for Revision	Compliance		

In accordance with the Rules and Procedures of the 2015–2020 Council of Experts, the Chemical Medicines Monographs 4 Expert Committee has revised the Cyclobenzaprine Hydrochloride monograph. The purpose for the revision is to correct the relative response factors for cyclobenzaprine *N*-oxide and dibenzocycloheptenone in the test for *Organic Impurities*.

The Cyclobenzaprine Hydrochloride Revision Bulletin supersedes the version that is scheduled to become official on May 1, 2020. Please note that Section 3.10 of USP-NF General Notices discusses Early Adoption. For questions regarding compliance, please consult your relevant regulatory authority.

Should you have any questions, please contact Heather Joyce, Senior Scientific Liaison (301-998-6792 or <u>hrj@usp.org</u>).

Cyclobenzaprine Hydrochloride

 $C_{20}H_{21}N \cdot HCI$

311.85 1-Propanamine, 3-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-N,N-dimethyl-, hydrochloride;

N, \hat{N} -Dimethyl-5*H*-dibenzo[*a*, *d*]cycloheptene- $\Delta^{5,\gamma}$ propylamine hydrochloride [6202-23-9].

DEFINITION

Cyclobenzaprine Hydrochloride contains NLT 98.0% and NMT 102.0% of cyclobenzaprine hydrochloride ($C_{20}H_{21}N$. HCl), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. **Spectroscopic Identification Tests** (197), Infrared Spectroscopy: 197M_A (CN 1-May-2020)
- **B.** The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- C. IDENTIFICATION TESTS—GENERAL (191), Chemical Identification Tests, Chloride Sample solution: 20 mg/mL of Cyclobenzaprine Hydrochloride in water Acceptance criteria: Meets the requirements

ASSAY

• PROCEDURE
Mobile phase: Dissolve 2.0 g of ammonium acetate in 350
mL of water. Add 650 mL of methanol, and adjust with 25%
ammonium hydroxide to a pH of 8.9.
Standard solution: 0.2 mg/mL of USP Cyclobenzaprine
Hydrochloride RS in <i>Mobile phase</i>
Sample solution: 0.2 mg/mL of Cyclobenzaprine
Hydrochloride in Mobile phase
Chromatographic system
(See Chromatography (621), System Suitability.)
Mode: LC
Detector: UV 226 nm
Column: 4.6-mm × 15-cm; 5-µm packing L1
Column temperature: 30°
Flow rate: 1 mL/min
Injection volume: 10 µL
Run time: NLT 2 times the retention time of
cyclobenzaprine
System suitability
Sample: Standard solution
Suitability requirements
Tailing factor: NMT 1.5
Relative standard deviation: NMT 1.0%
Analysis
Samples: Standard solution and Sample solution
Calculate the percentage of cyclobenzaprine hydrochloride
$(C_{20}H_{21}N \cdot HCI)$ in the portion of Cyclobenzaprine
Hydrochloride taken:
-

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

- = peak response from the Sample solution
- = peak response from the Standard solution = concentration of USP Cyclobenzaprine Hydrochloride RS in the Standard solution
- (mq/mL)
- = concentration of Cyclobenzaprine Hydrochloride C_{ν} in the Sample solution (mg/mL)

Acceptance criteria: 98.0%–102.0% on the dried basis

IMPURITIES

r_U

 r_{s} C_{s}

Residue on Ignition (281): NMT 0.1%

Change to read:

• ORGANIC IMPURITIES

Buffer: 5.7 g/L of ammonium acetate in water. Adjust with 25% ammonium hydroxide to a pH of 7.2. Mobile phase: Methanol and Buffer (65:35) System suitability solution: 0.5 mg/mL of USP Cyclobenzaprine Hydrochloride RS and 0.75 µg/mL each of USP Cyclobenzaprine Related Compound A RS and USP Cyclobenzaprine Related Compound B RS in Mobile phase Standard solution: 0.5 µg/mL of USP Cyclobenzaprine Hydrochloride RS in *Mobile phase* Sample solution: 500 µg/mL of Cyclobenzaprine Hydrochloride in Mobile phase Chromatographic system (See Chromatography (621), System Suitability.) Mode: LC Detector: UV 240 nm Column: 4.6-mm × 25-cm; 5-µm packing L7 Column temperature: 30° Flow rate: 1 mL/min Injection volume: 10 µL Run time: NLT 3.5 times the retention time of cyclobenzaprine System suitability Samples: System suitability solution, and Standard solution [NOTE—See Table 1 for relative retention times.] Suitability requirements **Resolution:** NLT 1.5 between cyclobenzaprine related compound A and cyclobenzaprine related compound B, System suitability solution **Tailing factor:** NMT 2.0 for the cyclobenzaprine peak, System suitability solution Relative standard deviation: NMT 5.0% for cyclobenzaprine, Standard solution Analysis Samples: Sample solution and Standard solution Calculate the percentage of each specified impurity and any individual unspecified impurity in the portion of Cyclobenzaprine Hydrochloride taken: $\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$ = peak response of each impurity from the Sample r_U solution rs = peak response of cyclobenzaprine from the Standard solution = concentration of USP Cyclobenzaprine Cs Hydrochloride RS in the Standard solution (ua/mL)= concentration of Cyclobenzaprine Hydrochloride C_{U} in the Sample solution (µg/mL) F

= relative response factor for each impurity (see Table 1)

Acceptance criteria: See Table 1.

Table 1				
Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%, w/w)	
Cyclobenzaprine related compound A	0.51	0.35	0.15	
Cyclobenzaprine related compound B	0.57	1.0	0.15	
Cyclobenzaprine N-ox- ide ^a	0.74	▲1.0 _▲ (RB 1-May-2020)	0.15	
Dibenzocycloheptenol ^b	0.87	0.45	0.1	
Cyclobenzaprine	1.0	_	_	
Amitriptyline	1.3	0.48	0.15	
Dibenzocyclohepte- none ^d	1.6	▲1.4 (RB 1-May-2020)	0.15	
Any individual unspeci- fied impurity	_	1.0	0.10	
Total impurities			1.0	

^a 3-(5*H*-Dibenzo[*a,d*]cyclohepten-5-ylidene)-*N,N*-dimethyl-1-propanamine *N*oxide.

^b 5*H*-Dibenzo[*a*,*d*]cycloheptene-5-ol.

^c 10,11-Dihydro-*N*,*N*-dimethyl-5*H*-dibenzo[*a*,*d*]cycloheptene- $\Delta^{5_{\gamma}}$,-propylamine. ^d Dibenzo[*a*,*d*]cyclohepten-5-one.

SPECIFIC TESTS

• Loss on Drying $\langle 731 \rangle$ Analysis: Dry at 105° to constant weight. Acceptance criteria: NMT 1.0%

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in well-closed containers.

• USP REFERENCE STANDARDS (11) USP Cyclobenzaprine Hydrochloride RS USP Cyclobenzaprine Related Compound A RS 5-[3-(Dimethylamino)propyl]-5*H*-dibenzo[a,d]-cyclohepten-5-ol. $C_{20}H_{23}NO$ 293.40

USP Cyclobenzaprine Related Compound B RS 3-(5*H*-Dibenzo[*a*,*d*]cyclohepten-5-ylidene)-*N*-methyl-1-propanamine hydrochloride. $C_{19}H_{19}N \cdot HCl 297.82$

© 2019 The United States Pharmacopeial Convention All Rights Reserved. C208951-M21060-CHM42015; C243295-M21060-CHM42015, rev. 00 20191227