

### **Buprenorphine and Naloxone Sublingual Tablets**

Type of PostingRevision BulletinPosting Date31-Jul-2020Official Date01-Aug-2020

**Expert Committee** Chemical Medicines Monographs 2

Reason for Revision Compliance

In accordance with the Rules and Procedures of the 2015–2020 Council of Experts, the Chemical Medicines Monographs 2 Expert Committee has revised the Buprenorphine and Naloxone Sublingual Tablets monograph. The purpose of the revision is to widen the acceptance criteria of the *Assay* from "94.0%–106.0% of the labeled amount of buprenorphine and naloxone" to "90.0%–110.0% of the labeled amount of buprenorphine and naloxone", to be consistent with FDA-approved specifications. The *Definition* is also revised accordingly to be consistent with the revised acceptance criteria of the *Assay*.

The Buprenorphine and Naloxone Sublingual Tablets Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Wei Yang, Scientific Liaison (301-816-8338 or <a href="wiy@usp.org">wiy@usp.org</a>).

# **Buprenorphine and Naloxone Sublingual Tablets**

### Change to read:

#### **DEFINITION**

Buprenorphine and Naloxone Sublingual Tablets contain amounts of buprenorphine hydrochloride and naloxone hydrochloride equivalent to  $^{\blacktriangle}NLT$  90.0% and NMT 110.0%  $_{\blacktriangle}$  (RB 1-Aug-2020) of the labeled amount of buprenorphine ( $C_{29}H_{41}NO_4$ ) and naloxone ( $C_{19}H_{21}NO_4$ ).

#### **IDENTIFICATION**

- **A.** The retention times of the buprenorphine and naloxone peaks of the *Sample solution* correspond to those of the *Standard solution*, as obtained in the *Assay*.
- **B.** The UV absorption spectra of the buprenorphine and naloxone peaks of the *Sample solution* and those of the *Standard solution* exhibit maxima and minima at the same wavelengths, as obtained in the *Assay*.

#### **ASSAY**

### Change to read:

#### • PROCEDURE

[Note—It is suggested to protect all solutions containing buprenorphine and naloxone from light.]

**Buffer:** 9 mM of <u>dibasic ammonium phosphate</u> in <u>water</u>. Adjust with a solution of <u>phosphoric acid</u> and <u>water</u> (1:1) to a pH of 6.2.

**Solution A:** <u>Acetonitrile</u>, <u>methanol</u>, and *Buffer* (7:3:90) **Solution B:** <u>Acetonitrile</u>, <u>methanol</u>, and *Buffer* (56:24:20)

Mobile phase: See Table 1.

Table 1

| Time<br>(min) | Solution A<br>(%) | Solution B<br>(%) |  |
|---------------|-------------------|-------------------|--|
| 0             | 99                | 1                 |  |
| 30            | 1                 | 99                |  |
| 45            | 1                 | 99                |  |
| 45.1          | 99                | 1                 |  |
| 55            | 99                | 1                 |  |

**Solution C:** Phosphoric acid and water (1:1000)

**Diluent:** Acetonitrile, methanol, and Solution C (7:3:90)

**Standard solution:** 0.57 mg/mL of <u>USP Buprenorphine Hydrochloride RS</u> and 0.13 mg/mL of <u>USP Naloxone</u> RS in *Diluent* 

**Sample solution:** Nominally 0.52 mg/mL of buprenorphine and 0.13 mg/mL of naloxone prepared as follows. Transfer NLT 13 Tablets to a suitable volumetric flask, and add about 70% of the final volume of *Diluent*. Sonicate for 15 min with occasional swirling and shake for 15 min. Dilute with *Diluent* to volume. Pass a portion through a suitable filter of 0.45-µm pore size. Discard the first 5 mL of filtrate.

#### **Chromatographic system**

(See Chromatography (621), System Suitability.)

Mode: LC

**Detector:** UV 280 nm. For *Identification B*, use a diode array detector in the range of 210–400 nm.

Column: 4.6-mm × 25-cm; 5-µm packing L11

Column temperature: 60° Flow rate: 0.8 mL/min Injection volume: 100 µL

**System suitability** 

**Sample:** Standard solution **Suitability requirements** 

Tailing factor: NMT 2.0 for both buprenorphine and naloxone

Relative standard deviation: NMT 2.0% for both buprenorphine and naloxone

### **Analysis**

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of buprenorphine  $(C_{29}H_{41}NO_4)$  in the portion of Tablets taken:

Result = 
$$(r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

 $r_{II}$  = peak response of buprenorphine from the Sample solution

 $r_{\rm S}$  = peak response of buprenorphine from the *Standard solution* 

 $C_S$  = concentration of <u>USP Buprenorphine Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 $C_{II}$  = nominal concentration of buprenorphine in the Sample solution (mg/mL)

 $M_{r1}$  = molecular weight of buprenorphine, 467.65

 $M_{r2}$  = molecular weight of buprenorphine hydrochloride, 504.11

Calculate the percentage of the labeled amount of naloxone ( $C_{19}H_{21}NO_4$ ) in the portion of Tablets taken:

Result = 
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

 $r_{II}$  = peak response of naloxone from the Sample solution

 $r_S$  = peak response of naloxone from the *Standard solution* 

 $C_S$  = concentration of <u>USP Naloxone RS</u> in the *Standard solution* (mg/mL)

 $C_{II}$  = nominal concentration of naloxone in the Sample solution (mg/mL)

Acceptance criteria: ▲90.0%-110.0% (RB 1-Aug-2020) of the labeled amount of buprenorphine

 $(C_{29}H_{41}NO_4)$  and naloxone  $(C_{19}H_{21}NO_4)$ 

### **PERFORMANCE TESTS**

• **Dissolution** (711)

Medium: Water (deaerated for 5 min); 500 mL

Apparatus 1: 100 rpm

Time: 10 min

**Buffer:** 0.018 M monobasic potassium phosphate in water prepared as follows. Dissolve 2.4 g of monobasic potassium phosphate and 0.5 g of sodium hydroxide in each liter of water. Adjust with phosphoric acid to a pH of 6.8.

Solution A: Acetonitrile, methanol, and Buffer (40:20:40)

Solution B: Acetonitrile and Buffer (78:22)

Mobile phase: See <u>Table 2</u>.

Table 2

| Time<br>(min) | Solution A<br>(%) | Solution B<br>(%) |  |
|---------------|-------------------|-------------------|--|
| 0             | 100               | 0                 |  |
| 2.0           | 100               | 0                 |  |
| 3.0           | 0                 | 100               |  |
| 6.0           | 0                 | 100               |  |
| 6.1           | 100               | 0                 |  |
| 8.0           | 100               | 0                 |  |

**Diluent:** Methanol and water (50:50)

**Standard solution:** 0.01 mg/mL of <u>USP Buprenorphine Hydrochloride RS</u> and 0.0025 mg/mL of <u>USP Naloxone RS</u> in *Diluent*. Sonicate if necessary. Pass a portion through a suitable filter of 0.45-μm pore size. Discard the first 4 mL of filtrate.

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

### **Chromatographic system**

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 230 nm

**Column:** 4.6-mm  $\times$  5-cm; 5- $\mu$ m packing <u>L7</u>

Column temperature: 25° Flow rate: 1.0 mL/min Injection volume: 40 µL

System suitability

**Sample:** Standard solution **Suitability requirements** 

**Tailing factor:** NMT 2.0 for both buprenorphine and naloxone

Relative standard deviation: NMT 2.0% for both buprenorphine and naloxone

**Analysis** 

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of buprenorphine  $(C_{29}H_{41}NO_4)$  dissolved:

Result = 
$$(r_U/r_S) \times C_S \times V \times (M_{r1}/M_{r2}) \times (1/L) \times 100$$

 $r_{II}$  = peak response of buprenorphine from the Sample solution

 $r_{\rm S}$  = peak response of buprenorphine from the *Standard solution* 

 $C_{\rm S}$  = concentration of <u>USP Buprenorphine Hydrochloride RS</u> in the Standard solution (mg/mL)

V = volume of Medium, 500 mL

 $M_{r1}$  = molecular weight of buprenorphine, 467.65

 $M_{r2}$  = molecular weight of buprenorphine hydrochloride, 504.11

L = label claim of buprenorphine (mg/Tablet)

Calculate the percentage of the labeled amount of naloxone ( $C_{19}H_{21}NO_4$ ) dissolved:

Result = 
$$(r_{IJ}/r_S) \times C_S \times V \times (1/L) \times 100$$

 $r_{II}$  = peak response of naloxone from the Sample solution

 $r_{\rm S}$  = peak response of naloxone from the *Standard solution* 

 $C_S$  = concentration of <u>USP Naloxone RS</u> in the *Standard solution* (mg/mL)

V = volume of *Medium*, 500 mL

L = label claim of naloxone (mg/Tablet)

**Tolerances:** NLT 80% (Q) of the labeled amount of buprenorphine ( $C_{29}H_{41}NO_4$ ) and naloxone ( $C_{19}H_{21}NO_4$ ) is dissolved.

• **UNIFORMITY OF DOSAGE UNITS** (905): Meet the requirements

#### **IMPURITIES**

#### • ORGANIC IMPURITIES

[Note—It is suggested to protect all solutions containing buprenorphine and naloxone from light.]

Buffer, Solution A, Solution B, Mobile phase, Solution C, Diluent, Sample solution, and Chromatographic system: Proceed as directed in the *Assay*.

**Standard solution:** 0.0015 mg/mL of <u>USP Buprenorphine Hydrochloride RS</u> and 0.0004 mg/mL of <u>USP Naloxone RS</u> in *Diluent* 

System suitability

**Sample:** Standard solution **Suitability requirements** 

Relative standard deviation: NMT 5% for buprenorphine and naloxone

#### **Analysis**

Samples: Sample solution and Standard solution

Identify the buprenorphine degradation products using the relative retention times given in <u>Table 3</u>. Calculate the percentage of each buprenorphine related degradation product in the portion of Tablets taken:

$$\mathsf{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

 $r_U$  = peak response of each individual buprenorphine related degradation product from the Sample solution

 $r_{\rm S}$  = peak response of buprenorphine from the *Standard solution* 

 $C_S$  = concentration of <u>USP Buprenorphine Hydrochloride RS</u> in the Standard solution (mg/mL)

 $C_{II}$  = nominal concentration of buprenorphine in the Sample solution (mg/mL)

 $M_{r1}$  = molecular weight of buprenorphine, 467.65

 $M_{r2}$  = molecular weight of buprenorphine hydrochloride, 504.11

Identify the naloxone degradation products using the relative retention times given in <u>Table 3</u>. Calculate the percentage of each naloxone related degradation product and any other degradation product in the portion of Tablets taken:

Result = 
$$(r_{IJ}/r_S) \times (C_S/C_{IJ}) \times 100$$

 $r_U$  = peak response of each naloxone related degradation product or any other degradation product from the Sample solution

 $r_{\rm S}$  = peak response of naloxone from the *Standard solution* 

 $C_S$  = concentration of <u>USP Naloxone RS</u> in the *Standard solution* (mg/mL)

 $C_{II}$  = nominal concentration of naloxone in the Sample solution (mg/mL)

**Acceptance criteria:** See <u>Table 3</u>. Disregard any peaks below 0.05%.

Table 3

| Name                                                | Relative<br>Retention<br>Time | Acceptance<br>Criteria,<br>NMT (%) |
|-----------------------------------------------------|-------------------------------|------------------------------------|
| Naloxone degradation product 1ª                     | 0.30                          | 0.5                                |
| Naloxone degradation product 2ª                     | 0.54                          | 0.5                                |
| Dealkyl buprenorphine <sup>b,c</sup>                | 0.55                          | _                                  |
| Naloxone                                            | 0.61                          | _                                  |
| Naloxone degradation product 3ª                     | 0.67                          | 0.5                                |
| Buprenorphine nitrile <sup>c,d</sup>                | 0.90                          | _                                  |
| 6- <i>O</i> -Desmethylbuprenorphine <sup>C</sup> ,e | 0.91                          | _                                  |
| Buprenorphine degradation product $1^{rac{f}{}}$   | 0.95                          | 0.3                                |
| Buprenorphine 7-(S)-epimer <sup>C, 9</sup>          | 0.99                          | _                                  |
| Buprenorphine                                       | 1.00                          | _                                  |
| Buprenorphine butenyl analog <sup>c,h</sup>         | 1.03                          | _                                  |
| 3- <i>O</i> -Methylbuprenorphine <sup>⊆,</sup> İ    | 1.16                          | _                                  |
| Any unspecified degradation product <sup>a</sup>    | _                             | 0.3                                |
| Total degradation products                          | _                             | 3.0                                |

<sup>&</sup>lt;sup>a</sup> Quantified relative to naloxone.

### **ADDITIONAL REQUIREMENTS**

• PACKAGING AND STORAGE: Preserve in tight containers, and store at controlled room temperature.

 $<sup>^{\</sup>rm b}$  (S)-2-(4,5 $\alpha$ -Epoxy-3-hydroxy-6-methoxy-6 $\alpha$ ,14-ethanomorphinan-7 $\alpha$ -yl)-3,3-dimethylbutan-2-ol.

<sup>&</sup>lt;sup>c</sup> These are process impurities and are excluded from the total degradation products.

<sup>&</sup>lt;sup>d</sup>  $4.5\alpha$ -Epoxy- $7\alpha$ -[(S)-2-hydroxy-3,3-dimethylbutan-2-yl]-3,6-dimethoxy- $6\alpha$ ,14-ethanomorphinan-17-carbonitrile.

 $<sup>^{\</sup>rm e}$  (S)-2-[17-(Cyclopropylmethyl)-4,5 $\alpha$ -epoxy-3,6-dihydroxy-6 $\alpha$ ,14-ethanomorphinan-7 $\alpha$ -yl]-3,3-dimethylbutan-2-ol.

<sup>&</sup>lt;sup>f</sup> Quantified relative to buprenorphine.

<sup>9</sup> (S)-2-[17-(Cyclopropylmethyl)-4,5 $\alpha$ -epoxy-3-hydroxy-6-methoxy-6 $\alpha$ ,14-ethanomorphinan-7 $\beta$ -yl]-3,3-dimethylbutan-2-ol.

 $<sup>^{</sup>h} \quad (S) - 2 - [17 - (But - 3 - en - 1 - yl) - 4, 5\alpha - epoxy - 3 - hydroxy - 6 - methoxy - 6\alpha, 14 - ethanomorphinan - 7\alpha - yl] - 3, 3 - dimethylbutan - 2 - ol.$ 

 $<sup>^{</sup>i}$  (S)-2-[17-(Cyclopropylmethyl)-4,5 $\alpha$ -epoxy-3,6-dimethoxy-6 $\alpha$ ,14-ethanomorphinan-7 $\alpha$ -yl]-3,3-dimethylbutan-2-ol.

## ullet USP Reference Standards $\langle 11 \rangle$

<u>USP Buprenorphine Hydrochloride RS</u> <u>USP Naloxone RS</u>

## Page Information:

Not Applicable

DocID:

© 2020 The United States Pharmacopeial Convention All Rights Reserved.