

## **Ampicillin Capsules**

Type of Posting Revision Bulletin
Posting Date 21-Dec-2023
Official Date 22-Dec-2023
Expert Committee Small Molecules 1

In accordance with the Rules and Procedures of the Council of Experts, the Small Molecules 1 Expert Committee has revised the Ampicillin Capsules monograph. The purpose of this revision is to add *Dissolution Test 2* to accommodate FDA-approved drug products with different dissolution conditions and/or tolerances than the existing dissolution test. *Labeling* information has been incorporated to support the inclusion of *Dissolution Test 2*.

• Dissolution Test 2 was validated using the Triart C18 brand of column with L1 packing. The typical retention time for ampicillin is about 6 min.

The Ampicillin Capsules Revision Bulletin supersedes the currently official monograph.

Should you have any questions, please contact Yanyin Yang, Senior Scientist II, (301-692-3623 or yanyin.yang@usp.org).

Official: December 22, 2023

# **Ampicillin Capsules**

#### **DEFINITION**

Ampicillin Capsules contain an amount of ampicillin (anhydrous or as the trihydrate) equivalent to NLT 90.0% and NMT 120.0% of the labeled amount of ampicillin ( $C_{16}H_{19}N_3O_4S$ ).

## **IDENTIFICATION**

#### • A. Thin-Layer Chromatography

Diluent: Acetone and 0.1 N hydrochloric acid (4:1)

Standard solution: 5 mg/mL of USP Ampicillin RS in Diluent

Sample solution: 5 mg/mL of ampicillin in Diluent from the contents of Capsules

Chromatographic system

(See <u>Chromatography (621), Thin-Layer Chromatography</u>.)

Adsorbent: 0.25-mm layer of chromatographic silica gel mixture

Application volume: 2 µL

Developing solvent system: Acetone, toluene, glacial acetic acid, and water (650:100:25:100)

**Spray reagent:** 3 mg/mL of <u>ninhydrin</u> in <u>alcohol</u>

# **Analysis**

Samples: Standard solution and Sample solution

Apply the *Standard solution* and the *Sample solution* to the plate, and develop the chromatogram using the *Developing solvent system*. When the solvent front has moved about three-fourths of the length of the plate, remove the plate from the chamber, mark the solvent front, and allow to air-dry. Locate the spots on the plate by spraying lightly with *Spray reagent*, and dry at 90° for 15 min.

**Acceptance criteria:** The  $R_F$  value of the principal spot of the *Sample solution* corresponds to that of the *Standard solution*.

## **ASSAY**

#### PROCEDURE

**Standard solution:** Prepare as directed for *Standard Preparation* in *Iodometric Assay—Antibiotics* (425), using USP Ampicillin RS.

**Sample solution:** Nominally 1.25 mg/mL of ampicillin prepared as follows. Place NLT 5 Capsules in a high-speed glass blender jar containing a suitable volume of water, and blend for  $4 \pm 1$  min. Dilute a suitable aliquot with water.

Analysis: Proceed as directed for *Procedure* in *Iodometric Assay—Antibiotics* (425).

Calculate the percentage of the labeled amount of ampicillin ( $C_{16}H_{19}N_3O_4S$ ) in the portion of Capsules taken:

Result = 
$$(B - I) \times (F_1/2) \times (1/C_{IJ}) \times F_2 \times 100$$

B = volume of 0.01 N sodium thiosulfate consumed in the Blank Determination (mL)

I = volume of 0.01 N sodium thiosulfate consumed in the *Inactivation and Titration* of the *Sample solution* (mL)

 $F_1$  = factor as calculated in <u>Iodometric Assay—Antibiotics (425)</u>

 $C_{II}$  = nominal concentration of ampicillin in the Sample solution (mg/mL)

 $F_2$  = conversion factor, 0.001 mg/ $\mu$ g

Acceptance criteria: 90.0%-120.0%

## **PERFORMANCE TESTS**

# Change to read:

• **DISSOLUTION** ▲ (RB-22-DEC-2023) (711)

<sup>▲</sup>Test 1: See <u>Dissolution (711), Procedure for a Pooled Sample</u>. <sub>▲ (RB 22-Dec-2023)</sub>

Medium: Water; 900 mL Apparatus 1: 100 rpm

Time: 45 min

**Standard solution:** L/900 mg/mL of USP Ampicillin RS in water, where L is the labeled amount of

ampicillin in mg/Capsule

**Sample solution:** Use a filtered portion of the solution under test.

Solution A: 1 in 1000 solution of polyoxyethylene (23) lauryl ether in water

**Solution B:** Dissolve 20 g of  $\underline{\text{hydroxylamine hydrochloride}}$  in 5 mL of  $\underline{\text{Solution A}}$ , and add  $\underline{\text{water}}$  to

make 1000 mL.

Buffer: 26 mg/mL of sodium hydroxide and 3.1 mg/mL of sodium acetate in water

**Ferric nitrate solution:** Suspend 233 g of <u>ferric nitrate</u> in about 600 mL of <u>water</u>, add 2.8 mL of <u>sulfuric acid</u>, stir until the <u>ferric nitrate</u> is dissolved, add 1 mL of <u>polyoxyethylene (23) lauryl ether</u>, dilute with <u>water</u> to 1000 mL, and mix.

**Apparatus:** Automatic analyzer consisting of (1) a liquid sampler, (2) a proportioning pump, (3) suitable spectrophotometers equipped with matched flow cells and analysis capability at 480 nm, (4) a means of recording spectrophotometric readings, and/or computer for data retrieval and



Click image to enlarge

Figure 1.

**Analysis:** With the sample line pumping <u>water</u>, the other lines pumping their respective reagents, and the spectrophotometer set at 480 nm, standardize the system until a steady absorbance baseline has been established. Transfer portions of the *Standard solution* and the *Sample solution* to sampler cups, and place in the sampler. Start the sampler, and conduct determinations of the *Standard* 

solution and the Sample solution typically at the rate of 40/h using a ratio of about 2:1 for sample and wash time.

Calculate the percentage of the labeled amount of ampicillin ( $C_{16}H_{19}N_3O_4S$ ) dissolved:

Result = 
$$(A_{IJ}/A_S) \times C_S \times V \times P \times F \times (1/L) \times 100$$

 $A_U$  = absorbance of the Sample solution

 $A_{S}$  = absorbance of the Standard solution

 $C_S$  = concentration of <u>USP Ampicillin RS</u> in the *Standard solution* (mg/mL)

V = volume of Medium, 900 mL

 $P = \text{potency of ampicillin in } \underline{\text{USP Ampicillin RS}} (\mu g/mg)$ 

F = conversion factor, 0.001 mg/ $\mu$ g

L = label claim (mg/Capsule)

**Tolerances:** NLT 75% (Q) of the labeled amount of ampicillin ( $C_{16}H_{19}N_3O_4S$ ) is dissolved.

▲ Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test* 2.

Medium: 0.1 N hydrochloric acid; 500 mL

Apparatus 1: 100 rpm

Time: 20 min

**Buffer:** Dissolve 1.36 g of <u>potassium phosphate, monobasic</u> in 1000 mL of <u>water</u>. Add 0.6 mL of <u>glacial acetic acid</u>. Adjust with 1 N <u>sodium hydroxide</u> solution or 10% (v/v) <u>phosphoric acid</u> to a pH of 3.5.

Mobile phase: Acetonitrile and Buffer (10:90)

Diluent: 87 g/L of potassium phosphate, dibasic in water

**Standard stock solution:** 1 mg/mL of <u>USP Ampicillin RS</u> in *Medium*. Sonicate to dissolve. Ensure the temperature of the water bath in the sonicator does not exceed 20°. Prepare the *Standard solution* as quickly as possible from the *Standard stock solution*.

## Standard solution

For Capsules labeled to contain 250 mg: 0.417 mg/mL of <u>USP Ampicillin RS</u> in *Diluent* from the *Standard stock solution* prepared as follows. Immediately dilute 10 mL of the *Standard stock solution* with *Medium* to 20 mL. Immediately transfer 10 mL of the resulting solution into a stoppered glass tube containing 2 mL of *Diluent* and mix. Store this solution in the refrigerator.

**For Capsules labeled to contain 500 mg:** 0.833 mg/mL of <u>USP Ampicillin RS</u> in *Diluent* from the *Standard stock solution* prepared as follows. Immediately transfer 10 mL of the *Standard stock solution* into a stoppered glass tube containing 2 mL of *Diluent* and mix. Store this solution in the refrigerator.

**Sample solution:** Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size, discarding the first 3 mL of the filtrate. Immediately, transfer 5 mL of the filtered solution into a stoppered glass tube containing 1 mL of the *Diluent* and mix. Store this solution in the refrigerator.

## Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

**Temperatures** 

Autosampler: 6°

Column: 50°

Flow rate: 1.5 mL/min
Injection volume: 10 μL

Run time: NLT 1.9 times the retention time of ampicillin

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

# **Analysis**

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of ampicillin  $(C_{16}H_{19}N_3O_4S)$  dissolved:

Result = 
$$(r_U/r_S) \times C_S \times V \times P \times F \times D \times (1/L) \times 100$$

 $r_U$  = peak response of ampicillin from the Sample solution

 $r_s$  = peak response of ampicillin from the Standard solution

 $C_S$  = concentration of <u>USP Ampicillin RS</u> in the *Standard solution* (mg/mL)

V = volume of Medium, 500 mL

P = potency of ampicillin in <u>USP Ampicillin RS</u> (μg/mg)

F = conversion factor, 0.001 mg/μg

D = dilution factor for the Sample solution

L = label claim (mg/Capsule)

**Tolerances:** NLT 80% (Q) of the labeled amount of ampicillin ( $C_{16}H_{19}N_3O_4S$ ) is dissolved.  $_{\blacktriangle (RB\ 22-Dec-16)}$ 

2023)

• **UNIFORMITY OF DOSAGE UNITS** (905): Meet the requirements

#### **SPECIFIC TESTS**

• Water Determination (921), *Method I*: NMT 4.0% where the Capsules contain anhydrous ampicillin, or between 10.0% and 15.0% where the Capsules contain ampicillin trihydrate

#### **ADDITIONAL REQUIREMENTS**

• PACKAGING AND STORAGE: Preserve in tight containers, and store at controlled room temperature.

## Change to read:

• **LABELING:** Label the Capsules to indicate whether the ampicillin therein is in the anhydrous form or is the trihydrate. 

<sup>▲</sup>When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used. 

<sup>▲</sup> (RB 22-Dec-2023)

• USP REFERENCE STANDARDS (11)

**USP Ampicillin RS** 

| Not Applicable  Current DocID: |                                                                        |
|--------------------------------|------------------------------------------------------------------------|
|                                | © 2023 The United States Pharmacopeial Convention All Rights Reserved. |
|                                |                                                                        |
|                                |                                                                        |
|                                |                                                                        |
|                                |                                                                        |