

Considerations for Residual Solvent Analysis – USP Method 467

Sky Countryman Product Manager – Gas Chromatography

The Role of Solvents?

- They may be critical to the synthetic process:
 - Enhance yields
 - Improve crystallization
 - Increase solubility
- The list of regulated solvents will most likely grow
 - Improved toxicological testing
 - New, unknown toxic affects

<467> Organic Volatile Impurities

- Solvents classified by risk assessment
 - Class 1: Solvents to be avoided
 - Class 2: Solvents to be limited
 - Class 3: Solvents with low toxic potential
- Drug formulations containing these solvents must be tested
- Only the solvents used or produced in the manufacturing and/or purification process must be evaluated

<467> Methodology Overview

- Drug product is dissolved in solution
 - Water Soluble Articles: Water
 - Water Insoluble Articles: DMF, DMI
- Headspace injection
- GC analysis with FID detection
 - Procedure A: G43 (ZB-624) Phase
 - Procedure B: G16 (ZB-WAXplus) Phase

GC Conditions

Column: Zebron ZB-624 **Dimensions:** 30 meters x 0.32 mm x 1.80 µm **Order No:** 7HM-G005-31 **Injection:** Split 5:1 1 mL @ 140 °C Oven Profile: 40°C for 20min to 240°C at 10°C/min for 20min **Carrier Gas:** Constant Flow Helium, 35 cm/sec **Detection:** Flame Ionization @ 250 °C

Class 1 Solvents

- Testing required
- Solvent levels must meet Concentration Limit

Solvent	Concentration Limit (ppm)	Concern
Benzene	2	Carcinogen
Carbon tetrachloride	4	Toxic and Environmental Hazard
1,2-Dichloroethane	5	Toxic
1,1-Dichloroethene	8	Toxic
1,1,1-Trichloroethane	1500	Environmental Hazard

Class 1 Solvents As Impurities

- Class 1 solvents are highly regulated
- Concentration Limit requires very low level
- These levels may be present in Class 2 or 3 solvents as impurities
- Example: Toluene possible impurity Benzene
- Cross contamination possible

Class 1: ZB-624 30m x 0.32mm x 1.80μm

Co-elution's:

Class 2 Solvents

- Solvents are assigned a permitted daily exposure (PDE) limit
- Each solvent is assigned a Concentration Limit allowable in any component of the drug product

Example 1:

	PDE (mg/day)	Concentration Limit (ppm)
Acetonitrile (ACN)	4.1	410

Class 2: ZB-624 30m x 0.32mm x 1.80μm

Class 3 Solvents

- If only Class 3 solvents are present...
- Solvent level is determined by <731> Loss on Drying
- The PDE limit, unless otherwise specified, is 50mg/day or 5,00ppm
- If solvent level is above the PDE limit, it must be identified and quantified

Class 3: ZB-624 30m x 0.32mm x 1.80μm

Limitations of the Method <467>

- Long analysis time >30min
- Poor resolution of some compounds
- Long wait equilibration time for headspace samples
- Poor detection of some compounds
- No definitive identification of contaminates
 FID does not give information about the peak

Single Solvent Method

Fast, Accurate, Sensitive, Definitive

Starting Point:

- 1. Injection Techniques
- 2. Column Phase
- 3. Analysis Time
- 4. Detector
- 5. Example Method

1. Injection Techniques

- 1. Headspace
- 2. Split

USP Method 467

enomene

- Method specifies headspace
- Reduces matrix interference
 - Most drug formulation products aren't volatile
- Negative: some compounds not detected
 - Class 2: formamide, 2-ethoxyethanol, 2methoxyethanol, ethylene glycol, Nmethylpyrrolidone, and sulfolane

Headspace Basics

The Effect of K on Sensitivity

*Compounds dissolved in water at 40°C

Equilibration Time

- Equilibration time is unique for sample
- Sample matrix will effect equilibration time
- Ideal time must be determined experimentally

- Addition of matrix modifiers:
 - Ammonium Chloride
 - Ammonium Sulfate
 - Sodium Chloride
 - Sodium Citrate
 - Sodium Sulfate
 - Potassium Carbonate
- Change the dilution solvent
- Increase vial temperature

Headspace Systems

Gas-Tight Syringe Injection

- Manual
- Autosampler

Sample Loop Systems

- Pressure-Balanced
- Pressurized Loop

Syringe Injection Systems

- Available from many different manufacturers
- Sample vials are heated from 35-200°C
- Syringe is heated from 35-150°C (limited by syringe)
- Syringe can be flushed with Nitrogen between runs to reduce carryover

enomene)

Balanced Pressure Loop

enomenex

- Headspace sample introduced without a syringe
 - Reduces fractionation caused by pressure changes
 - Closed system prevents any sample loss
- No valve system

Pressurized Loop System

ohenomenex

- Sample loop filled with defined amount
- Important to fill sample loop (no partial injections)
- Sample loop can be heated to high temperatures

Split Injection

- Most commonly used
- 1-5 µL injection
- Sample vaporized
- Small fraction enters the column
- Most of sample vapor is vented by the inlet purge stream

enomenex

Advantage of Split

- All compounds detected:
 - Class 2: formamide, 2-ethoxyethanol, 2methoxyethanol, ethylene glycol, Nmethylpyrrolidone, and sulfolane
- Simple to operate
- Reduces the amount of contamination on the column

2. Column Phases

What is the ideal phase?

 Depends on the goal of the separation...what are the target analytes

G43 Phase

Phase Structure

Column: ZB-624

Retention Mechanism:

- London Dispersion
- Permanent Dipole
- Induced Dipole
- Pi-Pi

6%-Cyanopropyl-Phenyl - 94% Dimethylpolysiloxane

G16 Phase

ohenomenex

Phase Structure

Polyethylene Glycol (PEG)

Columns:

- ZB-WAX
- ZB-WAXplus

Retention Mechanism:

- London Dispersion
- H-Bonding
- Permanent Dipole
- Induced Dipole

Phenylmethyl Polysiloxane

Phase Structure

Phenyl Dimethylsiloxane

Columns:

- ZB-5
- ZB-35
- ZB-50

Retention Mechanism:

phenomenex

- London Dispersion
- Induced Dipole
- Pi-Pi

Selectivity – Xylene Isomers

ZB-624 30m x 0.32mm x 1.80μm

Xylene Isomers Cont.

Ophenomenex

3. Analysis Time

As fast as possible with the best accuracy & precision!

The USP Method specifies FID

- Benefits:
 - Responds to a wide range of compounds
 - Large dynamic range
 - Inexpensive
 - Stable and easy to use
- Negatives:
 - No information about the analyte
 - Poor response for highly chlorinated compounds

Mass Spectrometer

- Benefits
 - Spectral confirmation
 - Highly sensitive
 - The "Gold Standard" for many other industries (toxicology, environmental, etc.)
- Negatives
 - Expensive
 - Requires specialized training

Alternatives

- Dual column GC-FID analysis
- Similar to EPA methodologies
- Two columns of dissimilar polarity used in parallel
- Confirmation is made by having a peak at the specified retention time on each phase

5. Example Method

Column: Zebron ZB-WAXplus 30 meters x 0.25 mm x 0.25 µm **Dimensions: Order No:** 7HG-G013-11 **Injection:** Split 50:1 0.2 µL @ 220 °C **Carrier Gas:** Constant Flow Helium, 1.2 mL/min Oven Profile: 30°C for 1min to 70°C at 14°C/min to 220°C at 25°C/min for 3 min MSD 18-350 amu @ 250 °C **Detection:**

Class 1, 2, and 3 Solvents

Zebron

A Closer Look

Zebron

A Closer Look Cont.

Peak	Compound	Mass Ion
30	Toluene	91
31	N-Propanol	31
40	m-Xylene	91/106
41	Butanol	56
42	Nitromethane	30
43	Cumene	105
44	2-Methoxyethanol	<mark>45</mark>
45	o-X <mark>ylene</mark>	91/106
46	Pyridine	79

Ophenomenex

Summary - USP Method 467

- Current <467> Method has some limitation
 - Long analysis time
 - Co-elution
 - Some compounds are not detected via Headspace
 - No spectral confirmation of target analytes
- By changing various parameters, method performance can be improved
- The final method needs to simple & easy to use

Thank You!

Questions?

© Copyright Phenomenex 2007

