Olanzapine and Fluoxetine Capsules

DEFINITION
Olanzapine and Fluoxetine Capsules contain an amount of Olanzapine and Fluoxetine Hydrochloride equivalent to NLT 90.0% and NMT 110.0% each of the labeled amount of olanzapine (C\textsubscript{17}H\textsubscript{20}N\textsubscript{4}S) and fluoxetine (C\textsubscript{17}H\textsubscript{18}F\textsubscript{3}NO).

IDENTIFICATION
- The retention times of the major peaks of the Sample solution correspond to those of the Standard solution, as obtained in the Assay.

ASSAY
- **PROCEDURE**

 Buffer: 37 mg/L of disodium ethylenediaminetetraacetate in water. Add 3.3 mL of phosphoric acid, and adjust with 50% sodium hydroxide to a pH of 2.5. Dissolve 8.7 g of sodium dodecyl sulfate in the resulting solution.

 Mobile phase: Acetonitrile and Buffer (1:1)
 Standard solution: 0.12 mg/mL of USP Olanzapine RS and 0.45 mg/mL of USP Fluoxetine Hydrochloride RS in Mobile phase

 Sample solution: Nominally, 0.06–0.18 mg/mL of olanzapine and 0.25–0.5 mg/mL of fluoxetine in Mobile phase from a counted number of Capsules prepared as follows. Place the Capsules (including shells) into a suitable volumetric flask and fill to about half volume with Mobile phase. Mix for NLT 30 min. If disintegration is incomplete, sonicate for NMT 5 min. Dilute with Mobile phase to volume, mix, and filter or centrifuge.

 Chromatographic system

 (See Chromatography (621), System Suitability.)

 Mode: LC
 Detector: UV 227 nm
 Column: 4.6-mm × 7.5-cm; 3.5-μm packing L7
 Column temperature: 40°
 Flow rate: 2 mL/min
 Injection volume: 10 μL
 Run time: 2.5 times the retention time of olanzapine

 System suitability

 Sample: Standard solution

 [NOTE—The relative retention times for olanzapine and fluoxetine are 1.0 and 1.5, respectively.]

 Suitability requirements

 Resolution: NLT 2.0 between olanzapine and fluoxetine

 Relative standard deviation: NMT 2.0% for the olanzapine and fluoxetine peaks

 Analysis

 Samples: Standard solution and Sample solution

 Calculate the percentage of the labeled amount of olanzapine (C\textsubscript{17}H\textsubscript{20}N\textsubscript{4}S) in the portion of Capsules taken:

 \[
 \text{Result} = \left(\frac{r_0}{r_1} \right) \times \left(\frac{C_0}{C_U} \right) \times 100
 \]

 \(r_0 \) = peak response of olanzapine from the Sample solution
 \(r_1 \) = peak response of olanzapine from the Standard solution
 \(C_0 \) = concentration of USP Olanzapine RS in the Standard solution (mg/mL)
 \(C_U \) = nominal concentration of olanzapine in the Sample solution (mg/mL)

 Calculate the percentage of the labeled amount of fluoxetine (C\textsubscript{17}H\textsubscript{18}F\textsubscript{3}NO) in the portion of Capsules taken:

 \[
 \text{Result} = \left(\frac{r_0}{r_3} \right) \times \left(\frac{C_0}{C_3} \right) \times \left(\frac{M_1}{M_2} \right) \times 100
 \]

 \(r_0 \) = peak response of fluoxetine from the Sample solution
 \(r_3 \) = peak response of fluoxetine from the Standard solution
 \(C_0 \) = concentration of USP Fluoxetine Hydrochloride RS in the Standard solution (mg/mL)
 \(C_3 \) = nominal concentration of fluoxetine in the Sample solution (mg/mL)
 \(M_1 \) = molecular weight of fluoxetine, 309.33
 \(M_2 \) = molecular weight of fluoxetine hydrochloride, 345.79

 Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

- **Dissolution (711)**

 Medium: 0.1 N hydrochloric acid; 900 mL, deaerated. [NOTE—Helium sparging recommended.]

 Apparatus 2: 50 rpm, with 3-prong sinkers

 Time: 30 min for both olanzapine and fluoxetine

 Standard solution: USP Olanzapine RS and USP Fluoxetine Hydrochloride RS in Medium to obtain a final concentration of \((L/1000) \) mg/mL each, where \(L \) is the Capsule label claim, in mg

 Sample solution: Pass a portion of the solution through a suitable filter of 0.45-μm pore size.

 Buffer, Mobile phase, Chromatographic system, System suitability, and Analysis: Proceed as directed in the Assay.

 Calculate the percentage of the labeled amount of olanzapine (C\textsubscript{17}H\textsubscript{20}N\textsubscript{4}S) dissolved:

 \[
 \text{Result} = \left(\frac{r_0}{r_{CS}} \right) \times \left(\frac{C_{S}}{C_{CS}} \right) \times \left(\frac{M_1}{M_2} \right) \times V \times 100
 \]

 \(r_0 \) = peak response of olanzapine from the Sample solution

 \(r_{CS} \) = peak response of olanzapine from the Standard solution

 \(C_{S} \) = concentration of USP Olanzapine RS in the Standard solution (mg/mL)

 \(C_{CS} \) = concentration of USP Fluoxetine Hydrochloride RS in Medium to obtain a final concentration of \((L/1000) \) mg/mL each, where \(L \) is the Capsule label claim, in mg

 \(M_1 \) = molecular weight of fluoxetine, 309.33

 \(M_2 \) = molecular weight of fluoxetine hydrochloride, 345.79

 Calculate the percentage of the labeled amount of fluoxetine (C\textsubscript{17}H\textsubscript{18}F\textsubscript{3}NO) dissolved:

 \[
 \text{Result} = \left(\frac{r_0}{r_{CS}} \right) \times \left(\frac{C_{S}}{C_{CS}} \right) \times \left(\frac{M_1}{M_2} \right) \times V \times 100
 \]

 \(r_0 \) = peak response of fluoxetine from the Sample solution

 \(r_{CS} \) = peak response of fluoxetine from the Standard solution

 \(C_{S} \) = concentration of USP Fluoxetine Hydrochloride RS in the Standard solution (mg/mL)

 \(C_{CS} \) = concentration of USP Fluoxetine Hydrochloride RS in Medium to obtain a final concentration of \((L/1000) \) mg/mL each, where \(L \) is the Capsule label claim, in mg

 \(M_1 \) = molecular weight of fluoxetine, 309.33

 \(M_2 \) = molecular weight of fluoxetine hydrochloride, 345.79

 Volume of Medium: 900 mL

 Tolerances: NLT 80% (Q) of the labeled amounts of olanzapine (C\textsubscript{17}H\textsubscript{20}N\textsubscript{4}S) and fluoxetine (C\textsubscript{17}H\textsubscript{18}F\textsubscript{3}NO) are dissolved.

- **Uniformity of Dosage Units (905):** Meet the requirements
ORGANIC IMPURITIES

Change to read:

IMPURITIES

- **System suitability solution:** 0.1 mg/mL of USP Olanzapine RS, 0.11 mg/mL of USP Fluoxetine Hydrochloride RS, and 0.002 mg/mL each of α[(2-methylamino)ethyl] benzyl alcohol, trifluoro-p-cresol, USP Fluoxetine Related Compound B RS, and USP Olanzapine Related Compound B RS in Mobile phase

- **Sample solution:** Empty the Capsules, and combine the contents in a suitable container. The contents of the Capsules may be powdered in a mortar, if necessary. Transfer an amount of the sample to a suitable volumetric flask to obtain nominally 0.2 mg/mL of olanzapine and 0.27–1.7 mg/mL of fluoxetine and fill to about 70% volume with Mobile phase. Mix for about 5 min. Dilute with Mobile phase to volume, mix, and filter or centrifuge.

- **Chromatographic system**
 - (See Chromatography (621), System Suitability.)
 - Mode: LC
 - Detector: UV 215 nm
 - Column: 4.6-mm × 25-cm; 5-µm packing L7
 - Temperatures:
 - Column: 35°
 - Autosampler: 5°
 - Flow rate: 1.5 mL/min
 - Injection volume: 50 µL
 - Run time: 1.5 times the retention time of fluoxetine

- **System suitability**
 - **Samples:** System suitability solution and Standard solution
 - **Suitability requirements**
 - **[NOTE—Identify the peaks using Table 1.]**

Table 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Relative Retention Time</th>
<th>Relative Response Factor</th>
<th>Acceptance Criteria, NMT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α[(2-Methylamino)ethyl] benzyl alcohol</td>
<td>0.22</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>Olanzapine related compound B</td>
<td>0.24</td>
<td>1.73</td>
<td>0.20</td>
</tr>
<tr>
<td>Trifluoro-p-cresol</td>
<td>0.30</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>Fluoxetine related compound B</td>
<td>0.31</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Fluoxetine related degradation product.

Olanzapine related degradation product.

Any other degradation product with a relative retention time <0.63 except fluoxetine related degradation products, and any degradation product with a relative retention time >1.0.

Sum of all specified fluoxetine related degradation products and any other fluoxetine related degradation product with relative retention times >1.0.

Sum of all specified olanzapine degradation products, any other degradation product with a relative retention time <0.63 except fluoxetine related degradation products, and any degradation product with relative retention time >1.0.

Resolution

NLT 1.9 between α[(2-methylamino)ethyl] benzyl alcohol and olanzapine related compound B, System suitability solution

Tailing factor: NMT 1.8 for olanzapine and fluoxetine, System suitability solution and Standard solution

Analysis

Samples: Standard solution and Sample solution

[NOTE—Peaks eluting before a relative retention time of 0.63 and after a relative retention time of 1.0, excluding any peak with relative retention times of 0.22, 0.30, and 0.31, are olanzapine related degradation products.]

Calculate the percentage of each olanzapine related degradation product in the portion of Capsules taken:

\[
\text{Result} = \left(\frac{r_d}{r_s} \right) \times \left(\frac{C_i}{C_0} \right) \times \left(\frac{M_d}{M_s} \right) \times 100
\]

- \(r_d\) = peak response of each individual impurity from the Sample solution
- \(r_s\) = peak response of olanzapine from the Standard solution
- \(C_i\) = concentration of USP Olanzapine RS in the Standard solution (mg/mL)
- \(C_0\) = nominal concentration of olanzapine in the Sample solution (mg/mL)
- \(F\) = relative response factor (see Table 1)

[NOTE—Peaks eluting at relative retention times of 0.22, 0.30, and 0.31, and any peaks between a relative retention time of 0.63 and 1.0, are fluoxetine related degradation products.]

Calculate the percentage of each fluoxetine related degradation product in the portion of Capsules taken:

\[
\text{Result} = \left(\frac{r_d}{r_s} \right) \times \left(\frac{C_i}{C_0} \right) \times \left(\frac{M_d}{M_s} \right) \times 100
\]

- \(r_d\) = peak response of each individual impurity from the Sample solution
- \(r_s\) = peak response of fluoxetine from the Standard solution
- \(C_i\) = concentration of USP Fluoxetine Hydrochloride RS in the Standard solution (mg/mL)
 rhetorical question: The nominal concentration of fluoxetine in the sample solution (mg/mL) is \(C_u \).

- \(M_{r1} \): molecular weight of fluoxetine, 309.33
- \(M_{r2} \): molecular weight of fluoxetine hydrochloride, 345.79

Acceptance criteria: See Table 1.

ADDITIONAL REQUIREMENTS

- **Packaging and Storage:** Preserve in tight containers. Store at controlled room temperature.

- **USP Reference Standards (1)**

 USP Fluoxetine Hydrochloride RS
 Benzenepropanamine, N-methyl-gamma-[4-(trifluoromethyl)phenoxy]-, hydrochloride, \(\pm \).
 \(C_{17}H_{18}F_3NO \cdot HCl \)
 345.79

 USP Olanzapine Related Compound B RS
 N-Methyl-3-phenylpropylamine.
 \(C_{10}H_{14}N \)
 149.23

 USP Olanzapine RS
 10H-Thieno[2,3-b][1,5]benzodiazepine, 2-methyl-4-(4-methyl-1-piperazinyl).
 \(C_{17}H_{20}N_4S \)
 312.43

 USP Olanzapine Related Compound B RS
 2-Methyl-10H-thieno-[2,3-b][1,5]benzodiazepin-4[5H]-one.
 \(C_{12}H_{16}N_2O_S \)
 230.29