Add the following:

*Venlafaxine Hydrochloride Extended-**Release Capsules**

DEFINITION

Venlafaxine Hydrochloride Extended-Release Capsules contain an amount of Venlafaxine Hydrochloride equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of venlafaxine (C₁₇H₂₇NO₂).

IDENTIFICATION

- A. ULTRAVIOLET ABSORPTION $\langle 197U \rangle$
- Wavelength range: 250–310 nm
- B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

PROCEDURE

- Mobile phase: Acetonitrile, triethylamine, and water (250:4:750). Adjust with phosphoric acid to a pH of
- Standard solution: 0.25 mg/mL of USP Venlafaxine Hydrochloride RS in Mobile phase
- Sample stock solution: Nominally 1.0 mg/mL of venlafaxine (from the contents of NLT 10 Capsules) prepared as follows. Transfer a weighed quantity of Capsule contents to a suitable volumetric flask. Add 8% of the flask volume of acetonitrile, and shake for 40 min. Add 50% of flask volume of *Mobile phase*, and shake for an additional 20 min. Dilute with *Mobile* phase to volume. Pass a portion through a suitable filter of 0.45-µm pore size.
- Sample solution: 0.25 mg/mL of venlafaxine (using the filtrate from the Sample stock solution) in Mobile phase

Chromatographic system

- (See Chromatography (621), System Suitability.)
- Mode: LC

Detector: UV 226 nm **Column:** 4.6-mm × 25-cm; 5-μm packing L1

- Flow rate: 1 mL/min
- Injection volume: 10 µL
- Run time: 1.5 times the retention time of venlafaxine System suitability
- Sample: Standard solution
- Suitability requirements
- Tailing factor: NMT 2.0

Relative standard deviation: NMT 1.5% Analysis

Samples: Standard solution and Sample solution Calculate the percentage of the labeled amount of venlafaxine ($\dot{C}_{17}H_{27}N\breve{O}_2$) in the portion of Capsules taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

ru = peak response from the Sample solution

= peak response from the Standard solution rs

- Cs = concentration of USP Venlafaxine Hydrochloride RS in the Standard solution (mg/mL)Cu
 - = nominal concentration of venlafaxine in the Sample solution (mg/mL)
- M_{r1} = molecular weight of venlafaxine, 277.40
- = molecular weight of venlafaxine M_{r2} hydrochloride, 313.86

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

Change to read:

- **DISSOLUTION** $\langle 711 \rangle$
 - Test 1 Medium: Water; 900 mL
 - Apparatus 1: 100 rpm
 - Times: 3, 6, 16, and 24 h
 - Mobile phase: Acetonitrile, triethylamine, and water
 - (450:4:550). Adjust with phosphoric acid to a pH of
 - Standard stock solution: 0.1 mg/mL of USP Venlafaxine Hydrochloride RS in water
 - Standard solution: 0.05 mg/mL of USP Venlafaxine Hydrochloride RS in acetonitrile, from the Standard
 - stock solution Sample stock (RB 1-Oct-2012) solution: Pass a portion of the solution under test through a suitable filter.
 - Sample solution: Sample stock solution and acetonitrile (50:50) (RB 1-Oct-2012)
 - Chromatographic system
 - (See Chromatography (621), System Suitability.) Mode: LC
 - Detector: UV 274 nm
 - Column: 4.6-mm × 25-cm; 5-µm packing L1 Flow rate: 1 mL/min

 - Injection volume: 60 µL System suitability
 - Sample: Standard solution Suitability requirements Tailing factor: NMT 2.5
 - Relative standard deviation: NMT 2.0%
 - Analysis

Calculate the concentration, C_i, of venlafaxine

 $(C_{17}H_{27}NO_2)$ in the *Medium* (mg/mL) after time point

• Result_i = $(r_U/r_S) \times C_S \times D \times (M_{r1}/M_{r2}) \bullet (RB 1-Oct-2012)$

- = peak response from the Sample solution ru
- = peak response from the Standard solution
- Cs = concentration of the USP Venlafaxine Hydrochloride RS in the Standard solution (mg/mL)
- •D = dilution factor for the Sample solution, $2 \bullet$ (RB 1-Oct-2012)
- = molecular weight of venlafaxine, 277.40 M_{r1}
- = molecular weight of venlafaxine Mr2 hydrochloride, 313.86

Calculate the percentage of the labeled amount (Q_i) of venlafaxine ($C_{17}H_{27}NO_2$) dissolved at each time point i:

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_{2} = \{ [C_{2} \times (V - V_{5})] + [C_{1} \times V_{5}] \} \times (1/L) \times 100$$

$$\operatorname{Result}_{3} = \{ [C_{3} \times (V - (2 \times V_{3}))] + [(C_{2} + C_{1}) \times V_{3}] \} \times (1/L) \times 100$$

 $\begin{aligned} \text{Result}_4 = \{ [C_4 \times (V - (3 \times V_5))] + [(C_3 + C_2 + C_1) \times V_5] \} \times \\ (1/L) \times 100 \end{aligned}$

- C_i = concentration of venlafaxine in *Medium* in the portion of sample withdrawn at time point i (mg/mL)
- = volume of Medium, 900 mL V
- = volume of the Sample solution withdrawn from Vs the *Medium* (mL)

= label claim (mg/Capsule)

Tolerances: See Table 1.

	Т	ab	le 1
--	---	----	------

Time Point, <i>i</i>	Time (h)	Amount Dissolved
1	3	NMT 40%
2	6	35%–60%
3	16	60%-85%
4	24	NLT 75%

The percentages of the labeled amount of venlafaxine (C₁₇H₂₇NO₂) dissolved at the times specified conform to *Acceptance Table 2* in *Dissolution* (711). **Test 2:** If the product complies with this test, the

labeling indicates that it meets USP Dissolution Test 2. Medium: Water; 900 mL Apparatus 1: 100 rpm Time: 2, 4, 8, 12, and 20 h

Capsule correction solution: Dissolve 6 empty Capsule shells in 900 mL of water.

- Blank: Dilute 150 mL of Capsule correction solution with water to 900 mL.
- Standard solution: (L/900) mg/mL of USP Venlafaxine Hydrochloride RS, where L is the label claim, in mg/Capsule, prepared as follows. To a weighed amount of the standard equivalent to the sample claim, add Capsule correction solution to fill 17% of final flask volume. Dilute with water to volume.

Sample solution: Pass a portion of the solution under test through a suitable filter.

Instrumental conditions

Mode: UV

Detector: 274 nm

Analysis

Samples: Standard solution and Sample solution [NOTE—If necessary, the volume of *Medium* may be corrected for volumes removed from any previous sample time points.]

Calculate the concentration, C_i, of venlafaxine $(C_{17}H_{27}NO_2)$ in Medium (mg/mL) after time point i:

$$\text{Result}_i = (r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$$

= peak response from the Sample solution rυ

= peak response from the Standard solution rs Cs

= concentration of USP Venlafaxine Hydrochloride RS in the Standard solution (mg/mL)

= molecular weight of venlafaxine, 277.40 M_{r1}

 M_{r2} = molecular weight of venlafaxine

hydrochloride, 313.86

Calculate the percentage of the labeled amount (Q_i) of venlafaxine $(C_{17}H_{27}NO_2)$ dissolved at each time point *i*:

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{ [C_2 \times (V - V_5)] + [C_1 \times V_5] \} \times (1/L) \times 100$$

$$\begin{aligned} \text{Result}_{3} = \{ [C_{3} \times (V - (2 \times V_{5}))] + [(C_{2} + C_{1}) \times V_{5}] \} \times (1/L) \\ \times 100 \end{aligned}$$

 $\begin{aligned} \text{Result}_i &= \{ [C_i \times (V - ([i-1] \times V_5))] + [(C_{i-1} + C_{i-2} + ... + C_1) \times V_5] \} \times (1/L) \times 100 \end{aligned}$

- = concentration of venlafaxine in Medium in the Ci portion of sample withdrawn at time point i (mg/mL)
- = volume of Medium, 900 mL V
- Vs = volume of the Sample solution withdrawn from the Medium (mL)

= label claim (mg/Capsule)

Tolerances: See Table 2.

Table 2

Time Point, <i>i</i>	Time (h)	Amount Dissolved
1	2	10%-30%
2	4	33%-53%
3	8	58%-78%
4	12	68%-88%
5	20	NLT 80%

The percentages of the labeled amount of venlafaxine (C₁₇H₂₇NO₂) dissolved at the times specified conform to Acceptance Table 2 in Dissolution $\langle 711 \rangle$.

Test 3: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 3. Medium: 0.1 N hydrochloric acid; 900 mL

- Apparatus 1: 100 rpm Time: 4, 8, and 16 h Buffer: Dissolve 1.4 g of monobasic potassium phosphate (RB 1-Oct-2012) in 1 L of water. Add 5 mL of triethylamine, and adjust with phosphoric acid to a pH of 3.0.
- Mobile phase: Acetonitrile and Buffer (35:65) Standard stock solution: 0.9 mg/mL of USP Venlafaxine Hydrochloride RS in *Medium*
- Standard solution: (L/750) mg/mL of USP
- Venlafaxine Hydrochloride RS in *Medium* from the *Standard stock solution*, where *L* is the label claim, in mg/Capsule. Pass a portion through a suitable filter of
- 0.45-µm pore size. Sample solution: •At the end of the specified time interval, withdraw a known volume of the solution from the dissolution vessel, and replace with an equal volume of fresh *Medium*. • (RB 1-Oct-2012) Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 225 nm Column: 4.6-mm × 25-cm; 5-μm packing L1

Flow rate: 1 mL/min

Column temperature: 30°

Injection volume: 10 µL

Rún time: 2 times the retention time of venlafaxine System suitability

- Sample: Standard solution Suitability requirements
- Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0% Analysis

Samples: Standard solution and Sample solution

Calculate the concentration, C_i, of venlafaxine

 $(C_{17}H_{27}NO_2)$ in Medium (mg/mL) after time point i:

 $\text{Result}_i = (r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$

- r_U = peak response from the Sample solution
- = peak response from the Standard solution r_{s} C_{s} = concentration of USP Venlafaxine
- Hydrochloride RS in the Standard solution (mg/mL)
- = molecular weight of venlafaxine, 277.40 M_{r1}

= molecular weight of venlafaxine M_{r2}

hydrochloride, 313.86

Calculate the percentage of the labeled amount (Q) of venlafaxine $(C_{17}H_{27}NO_2)$ dissolved at each time point i:

 $\text{Result}_1 = C_1 \times V \times (1/L) \times 100$

$$\operatorname{Result}_{2} = \{ [C_{2} \times V] + [C_{1} \times V_{S}] \} \times (1/L) \times 100$$

Result₃ = { $[C_3 \times V]$ + $[(C_2 + C_1) \times V_5]$ } × (1/L) × 100

= concentration of venlafaxine in Medium in the C_i portion of sample withdrawn at time point i (mg/mL)

V = volume of Medium, 900 mL

Vs = volume of the Sample solution withdrawn from the vessel and replaced with Medium (mL)

= label claim (mg/Capsule) Tolerances: See Table 3.

Table 3

Time Point, <i>i</i>	Time (h)	Amount Dissolved
1	4	35%-55%
2	8	65%–90%
3	16	NLT 85%

The percentages of the labeled amount of venlafaxine (C₁₇H₂₇NO₂) dissolved at the times specified conform to *Acceptance Table 2* in *Dissolution* (711). **Test 4:** If the product complies with this test, the

labeling indicates that it meets USP Dissolution Test 4. Medium: Water; 900 mL Apparatus 1: 100 rpm

Time: 2, 4, 8, 12 and 20 h Solution A: Dilute 10 mL of phosphoric acid with water to 100 mL.

Buffer: 11.4 g/L of ammonium dihydrogen phosphate in water

Mobile phase: Acetonitrile and Buffer (35:65). Adjust with Solution A to a pH of 4.4. Standard stock solution: 0.24 mg/mL of USP

- Venlafaxine Hydrochloride RS in Medium. Sonication may be used to aid in dissolution.
- **Standard solution:** See *Table 4* for the concentration of USP Venlafaxine Hydrochloride RS in *Medium* from the Standard stock solution. Using a glass syringe, pass a portion through a suitable filter of 0.45-um pore size.

Label Claim (L)	Standard Solution (mg/mL)	
37.5	0.05	
75	0.1	
150	0.1	

Sample solution: At the end of the specified time interval, withdraw a known volume of the solution from the dissolution vessel, and replace with an equal volume of fresh *Medium*. For Capsules that are labeled to contain 150 mg of venlafaxine, dilute this solution with an equal volume of *Medium*. Using a glass syringe, pass a portion of the solution under test through a suitable filter 0.45-µm pore size. Chromatographic system (See Chromatography (621), System Suitability.) Mode: LC Detector: UV 225 nm **Column:** 4.6-mm × 25-cm; 5-μm packing L7 Flow rate: 1.2 mL/min Injection volume: 20 µL Run time: 2 times the retention time of venlafaxine System suitability Sample: Standard solution Suitability requirements Tailing factor: NMT 2.0 Relative standard deviation: NMT 2.0% Analysis Samples: Standard solution and Sample solution Calculate the concentration, Ci, of venlafaxine (C17H27NO2) in Medium (mg/mL) after time point i: $\text{Result}_i = (r_U/r_S) \times C_S \times D \times (M_{r1}/M_{r2})$ = peak response from the Sample solution **r**u = peak response from the Standard solution rs Cs

- = concentration of USP Venlafaxine Hydrochloride RS in the Standard solution
- (mg/mL) D = dilution factor for the Sample solution, 2 for Capsules labeled to contain 150 mg of venlafaxine; 1 for Capsules labeled to contain 37.5 or 75 mg of venlafaxine

$$M_{c1}$$
 = molecular weight of venlafaxine, 277.40

$$M_{r2}$$
 = molecular weight of venlafaxine

hydrochloride, 313.86

Calculate the percentage of the labeled amount (Q_i) of venlafaxine ($C_{17}H_{27}NO_2$) dissolved at each time point i:

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\operatorname{Result}_2 = \{ [C_2 \times V] + [C_1 \times V_5] \} \times (1/L) \times 100$$

Result₃ = { $[C_3 \times V] + [(C_2 + C_1) \times V_5]$ } × (1/L) × 100

 $\text{Result}_4 = \{ [C_4 \times V] + [(C_3 + C_2 + C_1) \times V_5] \} \times (1/L) \times 100$

Result₅ = {[
$$C_5 \times V$$
] + [($C_4 + C_3 + C_2 + C_1$) × V₅]} × (1/L)
× 100

- Ci = concentration of venlafaxine in *Medium* in the portion of sample withdrawn at time point i (mg/mL)
- = volume of Medium, 900 mL
- Vs = volume of the Sample solution withdrawn from the vessel and replaced with Medium (mL)
- = label claim (mg/Capsule)

Tolerances: See Table 5.

Table 5

Time Point <i>, i</i>	Time (h)	Amount Dissolved
1	2	10%-30%
2	4	35%-55%
3	8	60%-80%
4	12	NLT 70%
5	20	NLT 85%

The percentages of the labeled amount of venlafaxine (C₁₇H₂₇NO₂) dissolved at the times specified conform

to Acceptance Table 2 in Dissolution (711). **Test 5:** If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 5. Medium: Water; 900 mL Apparatus 1: 100 rpm Time: 2, 5, 8, and 20 h Buffer: 11.4 g/L of monobasic ammonium phosphate

- in water. Adjust with dilute phosphoric acid (1 in 10) or dilute ammonia solution (1 in 10) to a pH of 4.4. Mobile phase: Acetonitrile and Buffer (25.5: 74.5)
- **Standard solution:** (*L*/900) mg/mL of USP Venlafaxine Hydrochloride RS in *Medium*, where *L* is
- the label claim, in mg/Capsule. Sample solution: At the end of the specified time interval, withdraw a known volume of the solution from the dissolution vessel, and replace with an equal volume of fresh Medium. Pass a portion of the withdrawn sample through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 225 nm

Column: 4.6-mm × 15-cm; 5-μm packing L7

- Flow rate: 1 mL/min
- Injection volume: 10 µL
- Run time: 1.5 times the retention time of venlafaxine

- System suitability Sample: Standard solution Suitability requirements Tailing factor: NMT 2.0 Relative standard deviation: NMT 2.0% Analysis Samples: Standard solution and Sample solution Calculate the concentration, C_i , of ven afaxine ($C_{17}H_{27}NO_2$) in the *Medium* (mg/mL) after time point $\text{Result}_i = (r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$
 - = peak response from the Sample solution r_U
 - = peak response from the Standard solution
 - r_{s} = concentration of USP Venlafaxine Hydrochloride RS in the Standard solution (mg/mL)
 - M_{r1} = molecular weight of venlafaxine, 277.40
 - M_{r2} molecular weight of venlafaxine
 - hydrochloride, 313.86 Calculate the percentage of the labeled amount (Q_i) of

venlafaxine ($C_{17}H_{27}NO_2$) dissolved at each time point i:

 $\text{Result}_1 = C_1 \times V \times (1/L) \times 100$

Result₂ = { $[C_2 \times V] + [C_1 \times V_5]$ } × (1/L) × 100

Result₃ = { $[C_3 \times V] + [(C_2 + C_1) \times V_3]$ } × (1/L) × 100

 $\text{Result}_4 = \{ [C_4 \times V] + [(C_3 + C_2 + C_1) \times V_5] \} \times (1/L) \times 100$

- = concentration of venlafaxine in Medium in the Ci portion of sample withdrawn at time point i (mg/mL)
- = volume of Medium, 900 mL
- Vs = volume of the Sample solution withdrawn from the vessel and replaced with *Medium* (mL) = label claim (mg/Capsule)

Tolerances: See Table 6.

Table 6				
Time Point, <i>i</i>	Time (h)	Amount Dissolved		
1	2	NMT 20%		
2	5	35%-55%		
3	8	60%-80%		
4	20	NLT 80%		

The percentages of the labeled amount of venlafaxine $(C_{17}H_{27}NO_2)$ dissolved at the times specified conform to Acceptance Table 2 in Dissolution (711). **Test 6:** If the product complies with this test, the

labeling indicates that it meets USP Dissolution Test 6. Medium: Water; 900 mL, deaerated

Apparatus 1: 100 rpm Time: 2, 4, 8, 12 and 24 h Buffer: 10 mL/L of triethylamine in water adjusted

with phosphoric acid to a pH of 3.0 Mobile phase: Acetonitrile and *Buffer* (20:80)

Standard solution: (L/900) mg/mL of venlafaxine

from USP Venlafaxine Hydrochloride RS in Medium, where L is the label claim, in mg/Capsule.

Sample solution: Centrifuge a portion of the solution under test.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC Detector: UV 226 nm **Column:** 4.6-mm \times 15-cm; 5- μ m packing L1 Flow rate: 2.5 mL/min Injection volume: 20 µL Rún time: 1.5 times the retention time of venlafaxine System suitability Sample: Standard solution Suitability requirements Tailing factor:NMT 2.0Relative standard deviation:NMT 2.0% Analysis Samples: Standard solution and Sample solution Calculate the concentration, C_i , of ven afaxine ($C_{17}H_{27}NO_2$) in the *Medium* (mg/mL) after time point Result_i = $(r_U/r_S) \times C_S \times (M_{r_1}/M_{r_2})$ = peak response from the Sample solution

- = peak response from the Standard solution r_{s}
- = concentration of USP Venlafaxine Hydrochloride RS in the Standard solution (mg/mL)
- M_{r1} = molecular weight of venlafaxine, 277.40 M_{r2} = molecular weight of venlafaxine
- hydrochloride, 313.86

Calculate the percentage of the labeled amount (Q_i) of venlafaxine ($C_{17}H_{27}NO_2$) dissolved at each time point

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\operatorname{Result}_{2} = \{ [C_{2} \times (V - V_{S})] + [C_{1} \times V_{S}] \} \times (1/L) \times 100$$

Result₃ = {[
$$C_3 \times (V - (2 \times V_5))$$
] + [($C_2 + C_1$) × V_5]} × (1/
L) × 100

$$Result_4 = \{ [C_4 \times (V - (3 \times V_5))] + [(C_3 + C_2 + C_1) \times V_5] \} \times (1/L) \times 100$$

Result₅ = {[
$$C_5 \times (V - (4 \times V_5))$$
] + [($C_4 + C_3 + C_2 + C_1$) ×
V₅] × (1/L) × 100

- C_i = concentration of venlafaxine in *Medium* in the portion of sample withdrawn at time point i (mg/mL)
- = volume of *Medium*, 900 mL
- Vs = volume of the Sample solution withdrawn from the Medium (mL)
- = label claim (mg/Capsule)

Tolerances: See Table 7.

Time Point, <i>i</i>	Time (h)	Amount Dissolved
1	2	NMT 30%
2	4	40%–60%
3	8	60%–80%
4	12	70%–90%
5	24	NLT 85%

The percentages of the labeled amount of venlafaxine (C17H27NO2) dissolved at the times specified conform to Acceptance Table 2 in Dissolution (711).

Test 7: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 7. Medium: Water; 900 mL Apparatus 1: 100 rpm Time: 2, 4, 8, 12 and 20 h Buffer: 1.7 g/L of dibasic potassium phosphate in water. Adjust with phosphoric acid (1 in 10) to a pH of 7.0. Mobile phase: Acetonitrile and Buffer (80:20) Standard solution: (L/900) mg/mL of USP Venlafaxine Hydrochloride RS in Medium, where L is the label claim, in mg/Capsule. Sample solution: At the end of the specified time interval, withdraw a known volume of the solution from the dissolution vessel, and replace with an equal volume of fresh Medium. Pass a portion of the withdrawn sample through a suitable filter of 0.45-µm pore size. Chromatographic system (See Chromatography (621), System Suitability.) Mode: LC Detector: UV 227 nm **Column:** 4.6-mm \times 25-cm; 5- μ m packing L1 Column temperature: 45° Flow rate: 1.5 mL/min Injection volume: 10 µL Rún time: 2 times the retention time of venlafaxine System suitability Sample: Standard solution Suitability requirements Tailing factor: NMT 2.0 Relative standard deviation: NMT 2.0% Analysis Samples: Standard solution and Sample solution Calculate the concentration, C_i, of venlafaxine (C₁₇H₂₇NO₂) in the *Medium* (mg/mL) after time point $\text{Result}_i = (r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$ = peak response from the Sample solution r_U = peak response from the Standard solution r_{s} = concentration of USP Venlafaxine Hydrochloride RS in the Standard solution

- (mg/mL)
- M_{r1} = molecular weight of venlafaxine, 277.40
- = molecular weight of venlafaxine M_{r2}
- hydrochloride, 313.86

Calculate the percentage of the labeled amount (Q_i) of venlafaxine (C17H27NO2) dissolved at each time point i:

 $\text{Result}_1 = C_1 \times V \times (1/L) \times 100$

$$\operatorname{Result}_{2} = \{ [C_{2} \times V] + [C_{1} \times V_{5}] \} \times (1/L) \times 100$$

Result₃ = { $[C_3 \times V]$ + $[(C_2 + C_1) \times V_5]$ } × (1/L) × 100

 $\text{Result}_4 = \{ [C_4 \times V] + [(C_3 + C_2 + C_1) \times V_5] \} \times (1/L) \times 100$

Result₅ = {[
$$C_5 \times V$$
] + [($C_4 + C_3 + C_2 + C_1$) × V_5]} × (1/L)
× 100

- Ci = concentration of venlafaxine in *Medium* in the portion of sample withdrawn at time point *i* (mg/mL)
- = volume of Medium, 900 mL
- Vs = volume of the Sample solution withdrawn from the vessel and replaced with Medium (mL) = label claim (mg/Capsule)

Tolerances: See Table 8.

Та	bl	e	8

Time Point, <i>i</i>	Time (h)	Amount Dissolved
1	2	NMT 10%
2	4	NMT 30%
3	8	40%–70%
4	12	60%–90%
5	20	NLT 80%

The percentages of the labeled amount of venlafaxine (C17H27NO2) dissolved at the times specified conform

- to Acceptance Table 2 in Dissolution (711). **Test 8:** If the product complies with this test, the
- labeling indicates that it meets USP *Dissolution Test 8*. **Medium:** Water; 900 mL
- Apparatus 1: 100 rpm Time: 1, 6, 16, and 24 h

Diluent: Acetonitrile and water (30:70)

- **Buffer:** Dissolve 8.9 g of dibasic sodium phosphate dihydrate and 2.5 g of sodium 1-octanesulfonate in 1 L of water. Adjust with 10% phosphoric acid to a pH of 3.0.
- Mobile phase: Acetonitrile and Buffer (32:68)
- Standard stock solution: 0.9 mg/mL of USP Venlafaxine Hydrochloride RS prepared as follows: Dissolve the weighed amount of the Standard first in acetonitrile using 20% of flask volume. Sonicate to dissolve, and dilute with Diluent to volume.
- Standard solution: (L/900) mg/mL of USP Venlafaxine Hydrochloride RS from Standard stock solution in Diluent, where L is the label claim, in mg/ Capsule.
- Sample solution: At the end of the specified time interval, withdraw a known volume of the solution from the dissolution vessel, and replace with an equal volume of fresh Medium. Pass a portion of the withdrawn sample through a suitable filter of 0.45-µm pore size.

Chromatographic system

- (See Chromatography (621), System Suitability.) Mode: LC Detector: UV 226 nm Column: 4.6-mm × 25-cm; 5-μm packing L1 Flow rate: 1.5 mL/min
- Injection volume: 20 µL

Rún time: 1.7 times the retention time of

venlafaxine

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0% Analysis

- Samples: Standard solution and Sample solution
- Calculate the concentration, C_i, of venlafaxine
- (C17H27NO2) in the Medium (mg/mL) after time point

 $\text{Result}_i = (r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$

Revision Bulletin Official October 1, 2012

- = peak response from the Sample solution rυ
- = peak response from the Standard solution rs Cs
- = concentration of USP Venlafaxine
 - Hydrochloride RS in the Standard solution (mg/mL)
- M_{r1} = molecular weight of venlafaxine, 277.40
- = molecular weight of venlafaxine M_{r2} hydrochloride, 313.86

Calculate the percentage of the labeled amount (Q_i) of venlafaxine ($C_{17}H_{27}NO_2$) dissolved at each time point

 $\text{Result}_1 = C_1 \times V \times (1/L) \times 100$

Result₂ = { $[C_2 \times V] + [C_1 \times V_S]$ } × (1/L) × 100

 $\text{Result}_{3} = \{ [C_{3} \times V] + [(C_{2} + C_{1}) \times V_{5}] \} \times (1/L) \times 100$

Result₄ = { $[C_4 \times V]$ + $[(C_3 + C_2 + C_1) \times V_S]$ } × (1/L) × 100

- Ci = concentration of venlafaxine in *Medium* in the portion of sample withdrawn at time point *i* (mg/mL)
- = volume of Medium, 900 mL
- V_{s} = volume of the Sample solution withdrawn from the vessel and replaced with Medium (mL)
- = label claim (mg/Capsule)

Tolerances: See Table 9.

Table 9

Time Point, <i>i</i>	Time (h)	Amount Dissolved
1	1	NMT 25%
2	6	50%-70%
3	16	70%–95%
4	24	NLT 80%

The percentages of the labeled amount of venlafaxine (C17H27NO2) dissolved at the times specified conform to Acceptance Table 2 in Dissolution (711). (RB 1-Oct-2012)

• UNIFORMITY OF DOSAGE UNITS (905): Meet the requirements

IMPURITIES

i٠

ORGANIC IMPURITIES

Mobile phase, Standard solution, and Sample solution: Proceed as directed in the Assay.

System suitability solution: 0.25 µg/mL of USP Venlafaxine Related Compound A RS in the *Standard* solution

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 226 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L1

Flow rate: 1 mL/min

Injection volume: 10 µL

Rún time: 4 times the retention time of venlafaxine

- System suitability
- Sample: System suitability solution [NOTE—The relative retention times for venlafaxine
- related compound A and venlafaxine are 0.9 and 1.0, respectively.

Suitability requirements

Resolution: NLT 1.5 between venlafaxine related compound A and venlafaxine

Tailing factor: NMT 2.0 for venlafaxine Relative standard deviation: NMT 5.0% for venlafaxine

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of each impurity in the portion of Capsules taken:

 $\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$

- = peak response of each individual impurity r_U from the Sample solution
- = peak response of venlafaxine from the rs Standard solution
- = concentration of USP Venlafaxine Cs Hydrochloride RS in the Standard solution (mg/mL)
- = nominal concentration of venlafaxine in the C_U Sample solution (mg/mL)
- = molecular weight of venlafaxine, 277.40 = molecular weight of venlafaxine M_{r1}
- M_{r2} hydrochloride, 313.86

Acceptance criteria

Individual impurities: NMT 0.2% Total impurities: NMT 0.5%

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in well-closed containers. Store at controlled room temperature. • LABELING: When more than one Dissolution test is given, the labeling states the Dissolution test used only if Test 1 is not used.

Change to read:

• USP REFERENCE STANDARDS $\langle 11 \rangle$ USP Venlafaxine Hydrochloride RS USP Venlafaxine Related Compound A RS

 $\begin{array}{c} 1-(1-(4-Methoxyphenyl)-2-(methylamino)ethyl)cyclohexanol hydrochloride. \\ C_{16}H_{25}NO_2 \cdot HCl \\ \end{array} \qquad \begin{array}{c} 299.84 \bullet ({}_{RB} 1-oct-2012) \bullet ({}_{RB} 1-Jul-2012) \end{array}$

Venlafaxine 7