Anagrelide Hydrochloride

 $C_{10}H_7CI_2N_3O \cdot HCI \cdot H_2O$ Anhydrous

310.56 292.55

[58579-51-4]. Imidazo[2,1-b]quinazolin-2(3H)-one, 6,7-dichloro-1,5dihydro-, monohydrochloride, monohydrate;

6,7-Dichloro-1,5-dihydroimidazo[2,1-*b*]-quinazolin-2(3*H*)-one monohydrochloride, monohydrate [823178-43-4].

DEFINITION

Anagrelide Hydrochloride contains NLT 98.0% and NMT 102.0% of anagrelide hydrochloride (C₁₀H₇Cl₂N₃O · HCl), calculated on the anhydrous basis.

IDENTIFICATION

A. INFRARED ABSORPTION (197K)

B. The retention time of the major peak of the *Sample* solution corresponds to that of the Standard solution, as obtained in the Assay.

C. IDENTIFICATION TESTS—GENERAL, Chloride (191): Meets the requirements

ASSAY

PROCEDURE Use freshly prepared standard and sample solutions and inject within 2 h.

Solution A: 6.8 g/L of monobasic potassium phosphate in water. Adjust with phosphoric acid to a pH of 2.5. **Mobile phase:** Acetonitrile and *Solution A* (1:3)

Diluent: Acetonitrile and water (1:1)

Standard stock solution: 0.5 mg/mL of anagrelide hydrochloride in acetonitrile prepared as follows. Transfer USP Anagrelide Hydrochloride RS into a suitable volumetric flask, add a small amount of 2 N hydrochloric acid (3 drops per every 50 mL of the final volume) and acetonitrile equivalent to fill about 80% of the final volume. Sonicate to dissolve, and dilute with acetonitrile to volume.

Standard solution: 0.05 mg/mL of anagrelide hydrochloride in Diluent from Standard stock solution

Sample stock solution: Weigh Anagrelide Hydrochloride, equivalent to 25 mg of anhydrous salt, into a 50-mL volumetric flask, add 3 drops of 2 N hydrochloride and 40 ml of acatonitrile. Sonicate to dissolve ric acid and 40 mL of acetonitrile. Sonicate to dissolve, and dilute with acetonitrile to volume.

Sample solution: Transfer 5 mL of Sample stock solution to a 50-mL volumetric flask, and dilute with Diluent to volume.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm \times 15-cm; 4- μ m packing L11

Flow rate: 1.2 mL/min Injection volume: 20 µL System suitability

Sample: Standard solution Suitability requirements

Column efficiency: NMT 3000 theoretical plates

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of anagrelide hydrochloride $(C_{10}H_7CI_2N_3O\cdot HCI)$ in the portion of Anagrelide Hydrochloride taken:

Result = $(r_U/r_S) \times (C_S/C_U) \times 100$

= peak response of anagrelide from the Sample r_{II} solution

 $r_{\rm S}$ = peak response of anagrelide from the Standard solution

= concentration of USP Anagrelide C_{S} Hydrochloride RS in the Standard solution (mg/mL)

= concentration of Anagrelide Hydrochloride in C_U the Sample solution (mg/mL)

Acceptance criteria: 98.0%-102.0% on the anhydrous basis

Residue on Ignition $\langle 281 \rangle$: NMT 0.1%

HEAVY METALS, Method II (231): NMT 20 ppm

Change to read:

ORGANIC IMPURITIES

Use freshly prepared standard and sample solutions and inject within 2 h.

Móbile phase: Proceed as directed in the Assay. **Diluent A:** Use the *Diluent* as described in the *Assay*. **Diluent B:** Acetonitrile and water (1:3)

Standard stock solution A: 0.05 mg/mL of USP Anagrelide Related Compound A RS in *Diluent A*Standard stock solution B: 0.05 mg/mL of anagrelide related compound B in acetonitrile. Transfer USP Anagrelide Related Compound B RS into a suitable volumetric flask, add acetonitrile equivalent to fill about 50% of the final volume and a small amount of 2 N hydrochloric acid (3 drops per 200 mL of the final volume). Sonicate to dissolve, heat in the hot water bath

if necessary, and dilute with acetonitrile to volume. **Standard stock solution C:** 0.1 mg/mL of anagrelide hydrochloride in acetonitrile. Transfer USP Anagrelide Hydrochloride RS into a suitable volumetric flask, add acetonitrile equivalent to fill about 80% of the final volume and a small amount of 0.12 N hydrochloric acid (1 mL per 100 mL of the final volume). Sonicate to dissolve, and dilute with acetonitrile to volume.

System suitability solution: 0.25 μg/mL of each of anagrelide related compound A and anagrelide related compound B in Mobile phase from Standard stock solution A and Standard stock solution B

Standard solution: 0.05 μg/mL of anagrelide hydrochloride in *Mobile phase* from *Standard stock solution* C **Sample stock solution**: Weigh Anagrelide Hydrochloride, equivalent to 25 mg of anhydrous salt, into a 50-mL volumetric flask. Add 45 mL of acetonitrile, sonicate, and swirl the flask until the preparation turns into a cloudy liquid. Add 1 drop of 0.12 N hydrochloric

2 Anagrelide

acid, swirl the flask until the liquid turns to clear, and dilute with acetonitrile to volume.

Sample solution: Transfer 5 mL of Sample stock solution into a 50-mL volumetric flask, and dilute with Diluent B to volume.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm \times 15-cm; 4- μ m packing L11

Autosampler temperature: 5 Flow rate: 1.2 mL/min Injection volume: 50 µL

System suitability

Samples: System suitability solution and Standard

solution

Suitability requirements

Resolution: NLT 2.0 between anagrelide related compound B and anagrelide related compound A, System suitability solution

Column efficiency: NLT 3000 theoretical plates, Standard solution

Tailing factor: NMT 2.0, Standard solution

Relative standard deviation: NMT 10.0%, Standard solution

Analysis

Standard solution and Sample solution Samples: Calculate the percentage of each impurity in the portion of Anagrelide Hydrochloride, on the anhydrous basis, taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

= peak response of each impurity from the r_U Sample solution

= peak response of anagrelide from the Standard $r_{\scriptscriptstyle S}$ solution

= concentration of USP Anagrelide C_{S} Hydrochloride RS in the Standard solution (mg/mL)

 C_U = concentration of Anagrelide Hydrochloride (anhydrous) in the Sample solution (mg/mL)

= relative response factor for each individual impurity (see Table 1)

Acceptance criteria See Table 1. Disregard any impurity peak less than 0.05%.

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Anagrelide related compound Ba	0.40	0.43	0.3
Anagrelide related compound Ab	0.55	0.37	0.15

^a (2-Amino-5,6-dichloroquinazolin-3(4H)-yl)acetic acid.

Table 1 (Continued)

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
 Anagrelide open ring methyl ester (if present)^c 	0.80	0.51	0.25 • (RB 1-
Anagrelide	1.00	1.0	
Anagrelide related compound Cd	1.41	0.32	0.15
Anagrelide trichloro derivative	2.44	1.0	0.15
Any unspecified impurity	_	1.0	0.1
Total impurities	_	_	1.0

^a (2-Amino-5,6-dichloroquinazolin-3(4H)-yl)acetic acid.

SPECIFIC TESTS

• **Water Determination**, *Method I* (**921**): 4.5%–7.5%

ADDITIONAL REQUIREMENTS

PACKAGING AND STORAGE: Preserve in tight, light-resistant containers. Store in a cold place.

USP REFERENCE STANDARDS (11) USP Anagrelide Hydrochloride RS USP Anagrelide Rélated Compound A RS

Ethyl 2-(6-amino-2,3-dichlorobenzylamino)acetate.

 $C_{11}H_{14}Cl_2N_2O_2$ 277.15

USP Anagrelide Related Compound B RS

(2-Amino-5,6-dichloroquinazolin-3(4H)-yl)acetic acid. $C_{10}H_9CI_2N_3O_2$ 274.10

^b Ethyl 2-(6-amino-2,3-dichlorobenzylamino)acetate.

^{*} Methyl 2-(5,6 dichloro-2-imino-1,2-dihydroquinazolin-3(4*H*)-yl)acetate.

^{• (}RB 1-Jun-2013) d Ethyl 2-(5,6-dichloro-2-imino-1,2-dihydroquinazolin-3(4*H*)-yl)acetate hydrobromide.

e 6,7,8-Trichloro-3,5-dihydroimidazo[2,1-b]quinazolin-2(1H)-one.

^bEthyl 2-(6-amino-2,3-dichlorobenzylamino)acetate.

^c Methyl 2-(5,6 dichloro-2-imino-1,2-dihydroquinazolin-3(4*H*)-yl)acetate.

⁽RB 1-Jun-2013)

d Ethyl 2-(5,6-dichloro-2-imino-1,2-dihydroquinazolin-3(4H)-yl)acetate hydrobromide.

^{6,7,8-}Trichloro-3,5-dihydroimidazo[2,1-b]quinazolin-2(1H)-one.