Add the following:

Divalproex Sodium Extended-Release **Tablets**

DEFINITION

Divalproex Sodium Extended-Release Tablets contain an amount of divalproex sodium equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of valproic acid $(C_8H_{16}O_2).$

IDENTIFICATION

• A. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

PROCEDURE

Buffer: 0.5 g of citric acid monohydrate and 0.4 g of dibasic sodium phosphate in 1 L of water Mobile phase: Methanol and *Buffer* (11:9). Adjust with

phosphoric acid to a pH of 5.0

- Diluent: Buffer, adjusted with phosphoric acid to a pH of 2.0
- Standard stock solution: 2.5 mg/mL of USP Valproic Acid RS in methanol

Standard solution: 1.0 mg/mL of USP Valproic Acid RS from the *Standard stock solution* in *Diluent*

Sample stock solution: Transfer an amount of powder (from NLT 20 Tablets) to a suitable volumetric flask to obtain a nominal concentration of 2.5 mg/mL of valproic acid. Dissolve in 50% of the flask volume of methanol by shaking for 1 h. Dilute with methanol to volume, and pass through a suitable filter.

Sample solution: 1.0 mg/mL of valproic acid from the filtrate of the Sample stock solution in Diluent

Chromatographic system (See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 210 nm Column: 3.9-mm × 15-cm; 4-μm packing L11

Flow rate: 0.7 mL/min

Injection volume: 20 µL

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 2.0 for valproic acid Relative standard deviation: NMT 2.0% for valproic acid

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of the labeled amount of valproic acid ($C_8H_{16}O_2$) in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

- r_U = peak response from the Sample solution
- = peak response from the Standard solution rs Cs = concentration of USP Valproic Acid RS in the Standard solution (mg/mL)
- = nominal concentration of valproic acid in the Cu Sample solution (mg/mL)

Divalproex 1

Acceptance criteria: 90.0%–110.0% of valproic acid

PERFORMANCE TESTS

Change to read:

• DISSOLUTION $\langle 711 \rangle$ Test 1

Acid stage medium: 0.1 N of hydrochloric acid; 500 mL

Buffer stage medium: 21.6 g of sodium dodecyl sulfate, 6.9 g of sodium dihydrogen phosphate monohydrate, and 0.12 g of sodium hydroxide in 1 L of water. Adjust with diluted sodium hydroxide or phosphoric acid to a pH of 5.5; 900 mL.

Apparatus 2: 100 rpm, with three prong sinkers only for 250-mg Tablets, •if necessary • (RB 1-Sep-2011) Times: 45 min in the Acid stage medium; 3, 12, and 24

h in the Buffer stage medium

Analysis: After 45 min in the *Acid stage medium*, withdraw a sample from the solution, and immediately filter. Replace the Acid stage medium with the Buffer stage medium, and run the test for the times specified.

Buffer: 1.42 g of dibasic sodium phosphate and 0.5 mL of glacial acetic acid in 1 L of water. Adjust with phosphoric acid to a pH of 2.5.

Mobile phase: Methanol and *Buffer* (13:7) Standard stock solution: 2.5 mg/mL of USP Valproic Acid RS in methanol

Standard solution: 0.15 mg/mL of USP Valproic Acid RS from the Standard stock solution in the Buffer stage medium. [NOTE-Add 40% of the flask volume of methanol before diluting with Buffer stage medium to volume.]

Sample solution: Pass a portion of the solution under test through a suitable filter of 20-µm pore size. Use the Sample solution from the Acid stage medium as is. Dilute the Sample solution from the Buffer stage medium with methanol by a factor of 2.

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 210 nm **Column:** 3.9-mm × 15-cm; 10-µm packing L11

Column temperature: 30°

Flow rate: 1 mL/min

Injection volume: 80 µL

Rún time: 6 min System suitability

Sample: Standard solution Suitability requirements

Tailing factor: NMT 2.5

Relative standard deviation: NMT 2.0% Analysis

Samples: Sample solutions from the Acid stage

medium, Buffer stage medium, and Standard solution Calculate the percentage of the labeled amount of valproic acid $(C_8H_{16}O_2)$ dissolved in the Acid stage

medium:

$$\text{Result} = (r_U/r_S) \times (C_S/L) \times V_A \times 100$$

= peak response from the Sample solution **r**u

- = peak response from the Standard solution rs
- Cs = concentration of USP Valproic Acid RS in the Standard solution (mg/mL)
- 1 = label claim (mg/Tablet)
- V_A = volume of the Acid stage medium, 500 mL

2 Divalproex

Calculate the concentration of valproic acid ($C_8H_{16}O_2$) dissolved in the Buffer stage medium at the time interval, *t*, in mg/mL:

$$C_t = (r_U/r_S) \times (C_S \times D_U) \times 2$$

- r_U = peak response from the Sample solution
- = peak response from the Standard solution rs Cs = concentration of USP Valproic Acid RS in the
- Standard solution (mg/mL) = dilution factor of the Sample solution in the Du

Buffer stage medium, 2 Calculate the percentage of the labeled amount of valproic acid $(C_8H_{16}O_2)$ in the *Buffer stage medium* at the first time interval:

Result =
$$C_1 \times V_B \times (100/L)$$

 C_1 = concentration of valproic acid in the Buffer stage medium at the first time interval (mg/mL)

= volume of the Buffer stage medium, 900 mL V_B = label claim (mg/Tablet)

Calculate the percentage of the labeled amount of valproic acid $(C_8H_{16}O_2)$ dissolved in the Buffer stage *medium* at the second time interval:

$$\text{Result} = [C_2 \times (V_B - V_S)] + (C_1 \times V_S) \times (100/L)$$

 C_2 = concentration of valproic acid in the *Buffer* stage medium at the second time interval (mg/mL)

= volume of the Buffer stage medium, 900 mL VB

- Vs = volume of the sample taken at each time interval (mL)
- = concentration of valproic acid in the Buffer C_1 stage medium at the first time interval (mg/mL)
- = label claim (mg/Tablet)

Calculate the percentage of the labeled amount of valproic acid $(C_8H_{16}O_2)$ dissolved in the *Buffer stage medium* at the n^{th} time interval:

$$\begin{aligned} \text{Result} &= C_n \times [V_B - (n-1) \times V_S] + [(C_1 + C_2 + + C_{n-1}) \times \\ V_S] \times (100/L) \end{aligned}$$

 C_n = concentration of valproic acid in the Buffer stage medium at the nth time interval (mq/mL)

 V_B = volume of the Buffer stage medium, 900 mL

- Vs = volume of the sample taken (mL)
- C_1 = concentration of valproic acid dissolved in the first time interval in the Buffer stage medium (mg/mL)
- = concentration of valproic acid dissolved in the C_2 second time interval in the Buffer stage medium (mg/mL)
- = concentration of valproic acid dissolved in the C_{n-1} $(n-1)^{th}$ time interval in the Buffer stage medium (mg/mL)
 - = label claim (mg/Tablet)

Tolerances

Acid stage: $^{\circ}NMT_{\circ(RB \ 1-Sep-2011)}$ 10% of the labeled amount of valproic acid $(C_8H_{16}O_2)$ is dissolved.

Buffer stage: See Table 1.

Table 1

Amount Dissolved (Tablets labeled to Time contain 500 mg of (h) valproic acid)		Amount Dissolved (Tablets labeled to contain 250 mg of valproic acid)	
3	10%–30%	10%-30%	
9	35%-55%	35%-60%	
12	45%–70%	45%-75%	
24	NLT 75%	NLT 75%	

The percentage of the labeled amount of valproic acid $(C_8H_{16}O_2)$ dissolved at the times specified conform to Acceptance Table 2 in Dissolution (711). **Test 2:** If the product complies with this test, the

labeling indicates that it meets USP Dissolution Test 2. Acid stage medium: 0.1 N of hydrochloric acid; 500

- **Buffer stage concentrate:** 15.53 g/L of monobasic sodium phosphate monohydrate, 5.45 g/L of sodium hydroxide, and 48.65 g of sodium lauryl sulfate per L in water (final pH approximately 11); 400 mL Buffer stage medium: Mix 400 mL of *Buffer stage*
- concentrate with 500 mL of Acid stage medium to a pH of 5.5 ± 0.05 . •[NOTE—If necessary, adjust the pH of the Buffer stage concentrate with 1 N hydrochloric acid or 1 N sodium hydroxide to assure that the final pH of the mixture of media is $5.5._{\odot (RB 1-Sep-2011)}$ Retain this solution to dilute the solutions prepared later.

Apparatus 2: 100 rpm, with wire helix sinkers **Times:** 45 min in the *Acid stage medium*; 3, 9, 12, and 21 h in the Buffer stage medium

Procedure: After 45 min in Acid stage medium, stop and lift the paddles from the vessels. Do not perform an analysis of the Acid stage medium. Transfer 400 mL of \bullet Buffer stage concentrate \bullet (RB 1-Sep-2011) to the vessels containing the Acid stage medium, and run the test for the times specified.

Buffer: 3.5 g/L of monobasic sodium phosphate monohydrate in water. Adjust with phosphoric acid to a pH of 3.5.

Mobile phase: Acetonitrile and Buffer (1:1)

Standard stock solution: 28 mg/mL of USP Valproic Acid RS in a suitable volumetric flask. Dissolve with 20% of the flask volume of 1 N sodium hydroxide, and dilute with water to volume. Dilute this solution with Buffer stage medium to obtain a final concentration of about 2.8 mg/mL.

Standard solutions: Prepare a series of dilutions in Buffer stage medium from the Standard stock solution in the concentrations of 0.028, 0.11, 0.22, 0.50, and 0.70 mg/mL

Sample solution: Withdraw 10 mL of the solution under test, and pass through a suitable filter of 35-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.) Mode: LC

Detector: UV 215 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing L7 Flow rate: 1 mL/min

Injection volume: 50 µL

- System suitability
 - Samples: 0.028, 0.11, 0.22, 0.50, and 0.70 mg/mL of the Standard solutions Suitability requirements

 - Tailing factor: NMT 2.0, using the 0.50 mg/mL of Standard solution

Table 2

		3 h	9 h	12 h	21 h
L1	Individual Tablets	10%–27%	35%–70%	44%–92%	NLT 87%
L2	Average	10%–27%	35%–70%	44%–92%	NLT 87%
L2	Individual Tablets	0%–37%	25%-80%	34%–102%	NLT 77%
L3	Average	10%–27%	35%–70%	44%–92%	NLT 87%
L3	Individual Tablets	NMT 2 Tablets are outside the range of 0%–37% and no individual Tablet is outside the range of 0%–47%	NMT 2 Tablets are outside the range of 25%–80% and no individual Tablet is outside the range of 15%–90%	NMT 2 Tablets are outside the range of 34%–102% and no individual Tablet is outside the range of 24%–112%	NMT 2 Tablets release less than 77% and no individual Tablet releases less than 67%

Relative standard deviation: NMT 2.0% Correlation coefficient: NLT 0.999, using the five concentrations of the Standard solution

Analysis

Samples: Sample solutions

- From the standard curve, determine the amount of valproic acid ($C_8H_{16}O_2$) dissolved at each time interval using the response of each Sample solution.
- Calculate the percentage of the labeled amount of valproic acid $(C_8H_{16}O_2)$ dissolved in the Buffer stage *medium* at the first time interval:

$$\text{Result} = (C_1 \times V_B) \times (100/L)$$

 C_1 = concentration of valproic acid in the Buffer stage medium at the 3 h time interval (mq/mL)

VB = volume of the Buffer stage medium, 900 mL = label claim (mg/Tablet)

Calculate the percentage of the labeled amount of valproic acid $(C_8H_{16}O_2)$ dissolved in the Buffer stage *medium* at the *n*th time interval:

Result =
$$C_n \times [V_B - (n-1) \times V_S] + [(C_1 + C_2 + ...+ C_{n-1}) \times V_B] \times (100/L)$$

- = concentration of valproic acid in the Buffer C_n stage medium at the nth time interval (mg/mL)
- VB = volume of the Buffer stage medium, 900 mL
- Vs = volume of the sample taken (mL)
- C_1 = concentration of valproic acid dissolved in the first time interval in the Buffer stage medium (mg/mL)
- C_2 = concentration of valproic acid dissolved in the second time interval in the Buffer stage medium (mg/mL)
- = concentration of valproic acid dissolved in the $(n-1)^{th}$ time interval in the *Buffer stage* C_{n-} medium (mg/mL)
 - = label claim (mg/Tablet)

1

Tolerances: The percentage of the labeled amount of valproic acid (C₈H₁₆O₂) dissolved at the times specified conform to the following acceptance table (Table 2).

- Test 3: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*. Acid stage medium: 0.1 N hydrochloric acid; 250 mL (row 1)
- Buffer stage medium:pH 6.8 buffer (6.8 g of monobasic potassium phosphate and 0.92 g of sodium hydroxide in 1 L of water. Adjust with phosphoric acid or sodium hydroxide to a pH of 6.8 ± 0.05 ; 250 mL (rows 2-4)

Apparatus 3:30 dips/min, 20-mesh polypropylene screen on top and bottom; 30 s drip time Time:1 h in acid stage (row 1); 2, 12, and 24 h in buffer stage (rows 2–4)

- Buffer:0.25 g of citric acid monohydrate, 0.2 g of anhydrous dibasic sodium phosphate, 3.4 g monobasic potassium phosphate, and 0.85 g of sodium hydroxide in 1 L of water. Adjust with phosphoric acid to a pH of 3.0 ± 0.05
- Mobile phase: Acetonitrile and Buffer (30:70) Acid stage standard stock solution:1 mg/mL of USP Valproic Acid RS in Acid stage medium. Dissolve a suitable amount of USP Valproic Acid RS in a suitable volumetric flask in 10% of the flask volume of methanol to solubilize valproic acid. Dilute with Acid stage medium to volume.
- Buffer stage standard stock solution:1 mg/mL of USP Valproic Acid RS in *Buffer stage medium*. Dissolve a suitable amount of USP Valproic Acid RS in a suitable volumetric flask in 10% of the flask volume of methanol to solubilize valproic acid. Dilute with *Buffer* stage medium to volume.
- Acid stage standard solution:(L/2500) mg/mL of valproic acid from *Acid stage stock solution* in *Acid stage medium*, where *L* is the Tablet label claim, in mg
- Buffer stage standard solution:(L/700) mg/mL of valproic acid from Buffer stage stock solution in Buffer stage medium, where L is the Tablet label claim, in mg
- Sample solutions: Centrifuge a portion of the solution under test at about 3000 rpm for about 20 min. Use the supernatant.

Chromatographic system

- (See Chromatography (621), System Suitability.) Mode:LC
- Detector:UV 210 nm
- **Column**:3.9-mm × 15-cm; 5-µm packing L11 Flow rate:2 mL/min

Injection volume:100 μL for Tablets labeled to contain 250 mg; 50 μL for Tablets labeled to contain 500 mg

System suitability

Samples: Acid stage standard solution and Buffer stage standard solution

Suitability requirements Tailing factor:NMT 2.0

Relative standard deviation:NMT 2.0%

Analysis

Samples: Acid stage standard solution, Buffer stage standard solution, Acid stage sample solutions, and Buffer stage sample solutions

Divalproex 4

Calculate the percentage of the labeled amount of valproic acid ($C_8H_{16}O_2$) dissolved at each time point Q_i :

$$Q_1 = (r_U/r_S) \times (C_S/L) \times V \times 100$$

$$Q_2 = [(r_U/r_S) \times (C_S/L) \times V \times 100] + Q_1$$

$$Q_{12} = [(r_U/r_S) \times (C_S/L) \times V \times 100] + Q_2$$

 $Q_{24} = [(r_U/r_S) \times (C_S/L) \times V \times 100] + Q_{12}$

- = peak response of the Sample solution from the r_U Acid stage or Buffer stage time points
- = peak response of the Acid stage standard rs
- solution or Buffer stage standard solution C_{s} = concentration of valproic acid in the Acid stage standard solution or Buffer stage standard
 - solution (mg/mL)
- = label claim (mg/Tablet) = volume of the Acid stage medium or Buffer V stage medium, 250 mL

Tolerances: See Table 3.

İ	Та	b	e	3

Time (h)	Amount Dissolved (Tablets labeled to contain 500 mg of valproic acid)	Amount Dissolved (Tablets labeled to contain 250 mg of valproic acid)	
1	NMT 10%	NMT 10%	
2	5%–25%	5%-25%	

)	Table 3 (Continued
l	Table 5 (Continued

Time (h)	Amount Dissolved (Tablets labeled to contain 500 mg of valproic acid)	Amount Dissolved (Tablets labeled to contain 250 mg of valproic acid)	
12	55%-75%	65%-85%	
24	NLT 80%	NLT 80%	

The percentage of the labeled amount of valproic acid (C₈H₁₆O₂) dissolved at the times specified conform to Acceptance Table 2 in Dissolution (711). ●(RB 1-Sep-2011)
UNIFORMITY OF DOSAGE UNITS (905): Meet the

requirements

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in well-closed containers at controlled room temperature.
- LABELING: When more than one Dissolution test is given, the labeling states the Dissolution test used only if Test 1 is not used.
- USP Reference Standards $\langle 11 \rangle$ ٠ USP Valproic Acid RS IS (USP34)