Oxaliplatin Injection

DEFINITION

Oxaliplatin Injection is a sterile solution of Oxaliplatin in Water for Injection. It contains NLT 90.0% and NMT 110.0% of the labeled amount of oxaliplatin $(C_8H_{14}N_2O_4Pt).$

IDENTIFICATION

• A. ULTRAVIOLET ABSORPTION (197U)

Sample solution: 100 µg/mL

Medium: Water

B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

[NOTE—All HPLC autosampler vials should be made of polypropylene.]

PROCEDURE

Acidified water: Adjust with phosphoric acid to a pH

Mobile phase: Acetonitrile and Acidified water (1:99) System suitability solution: 0.1 mg/mL of USP Oxaliplatin RS and 0.1 mg/mL of USP Oxaliplatin System Suitability RS in water. [NOTE—USP Oxaliplatin System Suitability RS is [SP-4-2-(1*R-trans*)]-(1,2-cyclohexanediamine-N,N') dichloridoplatinum(II).

Standard solution: 0.1 mg/mL of USP Oxaliplatin RS

Sample solution: 0.1 mg/mL of oxaliplatin in water, from the combined contents of NLT three vials of Injection

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 5-μm packing L1 Column temperature: 40°

Flow rate: 1.2 mL/min Injection volume: 20 µL

System suitability

Sample: System suitability solution
[NOTE—The relative retention times for USP Oxaliplatin System Suitability RS and oxaliplatin are 0.9 and 1.0, réspectively.]

Suitability requirements

Resolution: NLT 2.0 between USP Oxaliplatin Sys-

tem Suitability RS and oxaliplatin

Tailing factor: NMT 2.0 for the oxaliplatin peak Relative standard deviation: NMT 1.0% for the oxaliplatin peak

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of the labeled amount of oxaliplatin (C₈H₁₄N₂O₄Pt) in the portion of Injection taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

= peak response from the Sample solution r_U = peak response from the Standard solution **r**s **C**s

concentration of USP Oxaliplatin RS in the Standard solution (mg/mL)

 C_U = nominal concentration of oxaliplatin in the Sample solution (mg/mL)

Acceptance criteria: 90.0%–110.0%

IMPURITIES

Change to read:

LIMIT OF OXALIC ACID

[NOTE—All HPLC autosampler vials should be made of

polypropylene.]

Solution A: Dissolve 1.36 g of monobasic potassium phosphate in 10 mL of 10% tetrabutylammonium hydroxide, dilute with water to 1 L, and adjust with

phosphoric acid to a pH of 6.0.

Mobile phase: Acetonitrile and Solution A (1:4)

Standard solution: 35 μg/mL of USP Oxaliplatin Related Compound A RS in water. [NOTE—USP Oxaliplatin Related Compound A RS is available as dihydrate oxalic acid.]

System suitability solution: 0.1 mg/mL of succinic

acid in the Standard solution

Sensitivity solution: 3.5 μg/mL of USP Oxaliplatin Related Compound A RS in water from the Standard solution

Sample solution: Combined contents of NLT three

vials of Injection

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 5-μm packing L1

Column temperature: 40° Flow rate: 2 mL/min **Injection volume:** 10 μL

System suitability

Samples: Standard solution, System suitability solution, and Sensitivity solution

[NOTE—The relative retention times for succinic acid and oxalic acid are 0.8 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between succinic acid and

oxalic acid, System suitability solution

Tailing factor: 0.5–2.0 for the oxalic acid peak,

System suitability solution

Signal-to-noise ratio: NLT 10, Sensitivity solution Relative standard deviation: NMT 3.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of each impurity in the portion of Injection taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

= peak response of oxalic acid from the Sample r_U solution

= peak response of oxalic acid from the rs Standard solution

= concentration of USP Oxaliplatin Related C_{S} Compound A RS in the Standard solution (mg/mL)

= nominal concentration of oxaliplatin in the C_U Sample solution (mg/mL)

= molecular weight of anhydrous oxalic acid, M_{r1} 90.03

 M_{r2} = molecular weight of oxaliplatin related compound A, 126.07
Acceptance criteria: NMT 0.6%

LIMIT OF (SP-4-2)-DIAQUA[(1R,2R)-CYCLOHEXANE-1,2-DIAMINE-N, N']PLATINUM AND UNSPECIFIED IMPURITIES [NOTE—All HPLC autosampler vials should be made of polypropylene.]

Solution A: Dissolve 1.36 g of monobasic potassium phosphate and 0.55 g of sodium heptanesulfonate in 1 L of water. Adjust with phosphoric acid to a pH of

Solution B: Methanol and Solution A (19:81) **Solution C:** Methanol and Solution A (50.5: 49.5) Mobile phase: See Table 1.

Table 1

Time (min)	Solution B (%)	Solution C (%)	
0	100	0	
45.0	0	100	
45.5	100	0	
53.0	100	0	

System suitability solution: 2 mg/mL of USP Óxaliplatin RS in 0.005 M sodium hydroxide. Allow this solution to stand at room temperature for at least 5 days. Transfer 5 mL of this solution into a 50-mL volumetric flask, and dilute with water to volume. [Note—The preparation of the *System suitability solution* forms (*SP*-4-2)-diaqua[(1*R*,2*R*)-cyclohexane-1,2-diamine-*N*,*N*/]plating and diaquodiaminocyclohayanapalating disparations. hexaneplatinum dimer.]

Standard stock solution: Transfer a weighed quantity of USP Oxaliplatin Related Compound B RS into a suitable volumetric flask, add a volume of methanol equivalent to about 25% of the final volume, and sonicate for approximately 2 min to disperse the solids. Add a volume of 0.01 M nitric acid equivalent to about 65% of the final volume, and sonicate for approximately 30 min to dissolve. Allow to cool if necessary, and dilute with 0.01 M nitric acid to volume to obtain a solution with a concentration of 0.125 mg/mL.

Standard solution: 31.25 μg/mL of USP Oxaliplatin Related Compound B RS in 0.01 M nitric acid, from the *Standard stock solution*. [NOTE—USP Oxaliplatin Related Compound B RS is converted to (SP-4-2)-diaqua[(1R,2R)-cyclohexane-1,2-diamine-N,N']platinum in the Standard solution preparation.]

Sample solution: Combined contents of NLT three vials of Injection

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm \times 7.5-cm; 3- μ m packing L1

Column temperature: 10° Flow rate: 1 mL/min Injection volume: 20 µL

System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Resolution: NLT 8.0 between the peaks of (SP-4-2)diaqua[(1R,2R)-cyclohexane-1,2-diamine-N, N']platinum and diaquodiaminocyclohexaneplatinum dimer, System suitability solution

Tailing factor: NMT 2.0 for the (SP-4-2)-diagua[(1R, 2R)-cyclohexane-1,2-diamine-N,N']platinum peak,

System suitability solution

Relative standard deviation: NMT 3.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of each impurity in the portion of Injection taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times (1/F) \times 100$$

= peak response of each impurity from the r_U Sample solution

rs = peak response of (SP-4-2)-diaqua[(1R,2R)cyclohexane-1,2-diamine-N,N']platinum from the Standard solution

= concentration of USP Oxaliplatin Related C_{S} Compound B RS in the Standard solution (mg/mL)

 C_U = nominal concentration of oxaliplatin in the Sample solution (mg/mL)

= molecular weight of (SP-4-2)-diagua[(1R,2R)- M_{r1} cyclohexane-1,2-diamine-N,N']platinum,

= molecular weight of oxaliplatin related M_{r2} compound B, 433.28

= relative response factor for each individual impurity (see *Table 2*) F

Acceptance criteria

Individual impurities: See Table 2.

Total impurities: NMT 2.45%, from Limit of oxalic acid and Limit of (SP-4-2)-Diaqua[(1R,2R)-cyclohexane-1,2-diamine-N,N']platinum and Unspecified Impurities

Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
(SP-4-2)-Diaqua[(1R,2R)- cyclohexane-1,2- diamine-N,N']platinum	1.0	1.0	0.65
Diaquodiaminocyclo- hexaneplatinum dimera	1.4	2.5	0.50
Any individual unspecified impurity	_	4.0	●0.2● (RB 1- Oct-2012)

(SP-4-2)-Di- μ -oxobis [(1R,2R)-cyclohexane-1,2-diamine-kN, kN']diplatinum

SPECIFIC TESTS

- BACTERIAL ENDOTOXINS TEST (85): It contains NMT 1.0 USP Endotoxin Units/mg of oxaliplatin.
- STERILITY TESTS (71): It meets the requirements when tested as directed for Membrane Filtration in the Test for Sterility of the Product to Be Examined.
- PH (791): 4.0–7.0 using a polymer combination electrode
- **PARTICULATE MATTER IN INJECTIONS (788):** It meets the requirements for small-volume injections.
- OTHER REQUIREMENTS: It meets the requirements in Injections $\langle 1 \rangle$.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in single-dose or multiple-dose containers, preferably of Type I glass, protected from light. Store at controlled room temperature. Do not freeze.
- **LABELING:** Label it to indicate that it is to be diluted with a 5% dextrose solution. Oxaliplatin Injection must not be diluted in sodium chloride solutions or in chloridecontaining solutions.
- **USP REFERENCE STANDARDS** (11)

USP Endotoxin RS

USP Oxaliplatin RS

USP Oxaliplatin Related Compound A RS Oxalic acid dihydrate.

 $C_2H_2O_4 \cdot 2H_2O$ 126.07 USP Oxaliplatin Related Compound B RS [SP-4-2-(1R-trans)]-(1,2-Cyclohexanediamine-N,N') dinitratoplatinum(II). $C_6H_{14}N_4O_6Pt$ 433.28 USP Oxaliplatin System Suitability RS [SP-4-2-(1R-trans)]-(1,2-Cyclohexanediamine-N,N') dichloridoplatinum(II).

 $C_6H_{14}CI_2N_2Pt$ 380.17