Add the following:

▲Nateglinide

C₁₉H₂₇NO₃ 317.42

D-Phenylalanine, N-[[trans-4-(1-methylethyl)cyclohexyl] carbonyl]-;

-)-N-[(trans-4-Isopropylcyclohexyl)carbonyl-D-phenylalanine [105816-04-4].

DEFINITION

Nateglinide contains NLT 98.0% and NMT 102.0% of C₁₉H₂₇NO₃, calculated on the dried basis.

IDENTIFICATION

A. INFRARED ABSORPTION (197K)

B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

PROCEDURE

Buffer: 8.5 g/L of anhydrous dibasic sodium phosphate in water. Adjust with phosphoric acid to a pH of 7.5.

Mobile phase: Methanol and Buffer (1:1

Standard solution: 1.0 mg/mL of nateglinide prepared as follows: transfer USP Nateglinide RS to a suitable volumetric flask, dissolve first in methanol, using 50% of the final volume, and then dilute with Buffer to volume.

System suitability stock solution: 0.2 mg/mL each of USP Nateglinide Related Compound C RS and DL-phenylalanine

in methanol. [NOTE—Sonicate, if necessary.]

System suitability solution: Transfer USP Nateglinide RS to a suitable volumetric flask, dissolve first in methanol, using 45% of the final volume, add System suitability stock solution equal to 5% of the final volume, and then dilute with Buffer to volume to obtain a solution containing about 1.0 mg/mL of nateglinide and about 0.01 mg/mL each of nateglinide

related compound C and DL-phenylalanine.

Sample solution: Transfer about 100 mg of Nateglinide to a 100-mL volumetric flask, dissolve in 50 mL of methanol, and dilute with Buffer to volume.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 6-mm × 15-cm; 6-µm packing L71 (see Chromatographic Reagents under Reagents, Indicators, and Solutions)

Column temperature: 30° Flow rate: 1 mL/min Injection size: 20 μL System suitability

Samples: Standard solution and System suitability solution Suitability requirements

Resolution: NLT 0.9 between nateglinide related compound C and nateglinide, System suitability solution Relative standard deviation: NMT 1.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of nateglinide (C₁₉H₂₇NO₃) in the portion of Nateglinide taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

= peak response from the Sample solution r_U

= peak response from the *Standard solution* = concentration of USP Nateglinide RS in the *Stan-* C_{S} dard solution (mg/mL)

 C_U = concentration of Nateglinide in the Sample solution (mg/mL)

Acceptance criteria: 98.0%-102.0% on the dried basis

IMPURITIES

RESIDUE ON IGNITION $\langle 281 \rangle$: NMT 0.1%

HEAVY METALS, Method II (231): NMT 10 ppm

Change to read:

LIMIT OF NATEGLINIDE RELATED COMPOUND A AND OTHER **IMPURITIES**

Buffer: 7.8 g/L of monobasic sodium phosphate in water.

Adjust with phosphoric acid to a pH of 2.5. **Mobile phase:** Acetonitrile and *Buffer* (7:13)

Standard solution: Dissolve USP Nateglinide RS in acetonitrile to obtain a solution having a known concentration of about 0.3 mg/mL. Further dilute this solution with Mobile phase to obtain a solution having a known concentration of about 0.06 mg/mL

System suitability stock solution: Dissolve USP Nateglinide Related Compound A RS in acetonitrile to obtain a solution containing about 0.6 mg/mL. Further dilute this solution with Mobile phase to obtain a solution containing about

0.12 mg/mL

System suitability solution: Transfer an amount of USP Nateglinide RS to a suitable volumetric flask, dissolve first in acetonitrile using 10% of the final volume, then add System suitability stock solution equal to 10% of the final volume, and dilute with Mobile phase to volume to obtain a solution containing about 6 mg/mL of nateglinide and about 0.012 mg/mL of nateglinide related compound A.

Sample solution: Transfer 60 mg of Nateglinide to a 10-mL volumetric flask, dissolve in a minimal amount of • (RB1-Oct-2010) acetonitrile, and dilute with Mobile phase to

volume.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 3.9-mm \times 5-cm; 5- μ m, packing L7

Column temperature: 40° Flow rate: 2 mL/min Injection size: 100 µL

Run time: 5 times the retention time of nateglinide

System suitability

Samples: Standard solution and System suitability solution

Suitability requirements

Resolution: NLT 2.5 between nateglinide related compound A and nateglinide, System suitability solution Relative standard deviation: NMT 2.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of each impurity in the portion of Nateglinide taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

- = peak response of each impurity from the Sample r_U
- = peak response of nateglinide from the Standard rs solution
- = concentration of USP Nateglinide RS in the Stan- C_{S} dard solution (mg/mL)
- = concentration of Nateglinide in the Sample solu- C_U tion (ma/mL)
- = relative response factor (see Table 1)

Acceptance criteria

Individual impurities: See Table 1.

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)	
Nateglinide related compound A ^a	0.5	0.015	0.2	
Ethyl analog ^b	0.6	1.0	0.1	
Nateglinide	1.0	_	_	
IPP impurity ^c	3.1	1.0	0.1	
Ester impurity ^d	4.1	0.94	0.1	
Any other individ- ual impurity	_	1.0	0.1	

- a trans-4-Isopropylcyclohexylcarboxylic acid.
- ^b *N*-(*trans*-4-Ethylcyclohexylcarbonyl)-D-phenylalanine.
- N-(*trans*-4-Isopropylcyclohexylcarbonyl)-D-phenylalanine-D-phenylalanine.
- d N-(trans-4-isopropylcyclohexylcarbonyl)-D-phenylalanine-ethyl ester.

LIMIT OF NATEGLINIDE RELATED COMPOUND B

Mobile phase: 0.77 g/L of ammonium acetate in methanol [NOTE—The following solutions are stable for up to 48 h when stored in a refrigerator.]

Standard solution: 0.02 mg/mL of USP Nateglinide Related Compound B RS in methanol. [NOTE—Nateglinide related compound B is N-(trans-4-isopropyl-cyclohexylcarbonyl)-Lphenylalanine.]

System suitability solution: 10 mg/mL of USP Nateglinide RS and 0.02 mg/mL of USP Nateglinide Related Compound B RS in methanol

Sample solution: 10 mg/mL of Nateglinide in methanol Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

Column: 4-mm \times 25-cm or 4.6-mm \times 25-cm; 5- μ m packing L72 (see Chromatographic Reagents under Reagents, Indicators, and Solutions)

Column temperature: 40°

Flow rate: 0.8 mL/min. [NOTE—The flow rate can be adjusted as needed to achieve a recommended retention time of nateglinide related compound B at about 25 min.]

Injection size: 10 µL System suitability

[NOTE—The elution order is nateglinide related compound

B, followed by the nateglinide peak.]
Samples: Standard solution and System suitability solution

Suitability requirements

Resolution: NLT 0.8 between nateglinide related compound B and nateglinide, System suitability solution Relative standard deviation: NMT 5%, Standard solution

Analysis

Standard solution and Sample solution Calculate the percentage of nateglinide related compound B in the portion of Nateglinide taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

- = peak response of nateglinide related compound B from the Sample solution
- = peak response of nateglinide related compound B rs from the Standard solution
- = concentration of USP Nateglinide Related Com- C_{S} pound B RS in the Standard solution (mg/mL)
- C_U = concentration of Nateglinide in the Sample solution (mg/mL)

Acceptance criteria: NMT 0.2%

LIMIT OF NATEGLINIDE RELATED COMPOUND C AND **PHENYLALANINE**

Mobile phase, Standard solution, System suitability solution, Sample solution, and Chromatographic system: Proceed as directed in the Assay.

Diluted standard solution: Dilute the Standard solution with Mobile phase to obtain a solution having a known concentration of about 0.01 mg/mL of nateglinide.

Samples: Sample solution and Diluted standard solution Calculate the percentage of each specified impurity listed in *Table 2* in the portion of Nateglinide taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

= peak response of each impurity from the Sample r_U

= peak response of nateglinide from the Diluted rs standard solution

= concentration of nateglinide in the Diluted stan- C_{S} dard solution (mg/mL)

= concentration of Nateglinide in the Sample solu- C_U tion (mg/mL)

relative response factor of each individual impurity (see Table 2)

Acceptance criteria

Individual impurities: See Table 2.

Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Phenylalanine	0.2	1.5	0.2
Nateglinide <i>cis</i> - isomer ^a (related compound C)	0.9	0.97	0.2
Nateglinide	1.0	_	_

^a N-(cis-4-isopropylcyclohexylcarbonyl)-D-phenylalanine.

Total impurities: The sum of all impurities found in the tests for Limit of Nateglinide Related Compound A and Other Impurities, Limit of Nateglinide Related Compound B, and Limit of Nateglinide Related Compound C and Phenylalanine is NMT 0.5%.

SPECIFIC TESTS

Change to read:

Loss on Drying (731): Dry a sample at 105° for 2 h: it loses NMT 0.5% (RB 1-Oct-2010) of its weight.

ADDITIONAL REQUIREMENTS

PACKAGING AND STORAGE: Preserve in tight containers. Store at room temperature.

• USP REFERENCE STANDARDS (11)
USP Nateglinide RS (–)-*N*-[(*trans*-4-lsopropylcyclohexyl)carbonyl-D-phenylalanine
C₁₉H₂₇NO₃ 317.42 USP Nateglinide Related Compound A RS trans-4-lsopropylcyclohexylcarboxylic acid.

C₁₀H₁₈O₂ 170.2

USP Nateglinide Related Compound B RS N-(trans-4-lsopropylcyclohexylcarbonyl)-L-phenylalanine. C₁₉H₂₇NO₃ 317.4 USP Nateglinide Related Compound C RS Nateglinide *cis*-isomer, *N*-(*cis*-4-isopropylcyclohexyl-carbonyl)-D-phenylalanine. C₁₉H₂₇NO₃ 317.4_{AUSP33}