Cephalexin Hydrochloride

 $C_{16}H_{17}N_3O_4S\cdot HCI\cdot H_2O$

401 87

5-Thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, 7-[(aminophenylacetyl)amino]-3-methyl-8-oxo-, monohydrochloride, monohydrate, $[6R-[6\alpha,7\beta(R^*)]]$ -;

(6R,7R)-7-[(2R)-2-Amino-2-phenylacetamido]-3-methyl-8-oxo-5thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, monohydrochloride, monohydrate;

7-(D-2-Amino-2-phénylacetamido)-3-methyl-3-cephem-4-carboxylic acid hydrochloride monohydrate [105879-42-3].

DEFINITION

Cephalexin Hydrochloride contains the equivalent of NLT 800 µg and NMT 880 μg of cephalexin (C₁₆H₁₇N₃O₄S) per mg.

IDENTIFICATION

Delete the following:

• A. THIN-LAYER CHROMATOGRAPHY

Standard solution: 25 mg/mL of USP Cephalexin RS in water

with the aid of 0.1 N hydrochloric acid

Sample solution: 25 mg/mL in water with the aid of 0.1 N

hydrochloric acid

Chromatographic system

(See Chromatography (621), Thin-Layer Chromatography.)

Mode: TLC

Adsorbent: 0.25-mm layer of chromatographic silica gel

mixture

Application volume: 5 µL

Developing solvent system: Ethyl acetate, acetonitrile, gla-

cial acetic acid, and water (21:7:7:9)

Analysis

Samples: Standard solution and Sample solution

Allow the spots to dry, place the plate in a saturated chamber containing the solvent system and lined with filter paper. Develop the chromatogram until the solvent front has moved three-fourths of the length of the plate. Remove the plate from the developing chamber, mark the solvent front, allow the plate to air-dry, and examine under short-wavelength UV light.

Acceptance criteria: The R_F value of the principal spot of the Sample solution corresponds to that of the Standard solution. •5

Add the following:

• A. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay. •5

Delete the following:

B. PROCEDURE

Sample solution: 0.02 mg/mL of cephalexin in water **Analysis:** The UV absorption spectrum of the Sample solution exhibits maxima and minima at the same wavelengths as that of a similar solution of USP Cephalexin RS, concomitantly measured.

Change to read:

• B.• 5 IDENTIFICATION TESTS—GENERAL, Chloride (191): 10 mg/mL meets the requirements

ASSAY

Change to read:

PROCEDURE

Mobile phase: 0.985 g/L of sodium 1-pentanesulfonate in a mixture of acetonitrile, methanol, triethylamine, and water (20:10:3:170), adjusted with phosphoric acid to a pH of 3.0 \pm

Standard stock solution: 1 mg/mL of USP Cephalexin RS in water

Standard solution: *0.4 mg/mL of cephalexin in Mobile phase from Standard stock solution • 5

Sample stock solution: 1.15 mg/mL of Cephalexin Hydrochloride in water

•0.4 mg/mL of cephalexin in *Mobile phase* Sample solution: from Sample stock solution 5

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 25-cm; packing L1 of low acidity

Flow rate: 1.5 mL/min Injection size: 20 μL System suitability

Sample: Standard solution

Suitability requirements

Relative standard deviation: NMT 2.0% Analysis

Samples: Standard solution and Sample solution

Calculate the quantity, in μg , of $C_{16}\dot{H}_{17}N_3O_4S$ in each mg of Cephalexin Hydrochloride taken:

• Result =
$$(r_U/r_S) \times (C_S/C_U) \times P$$

 \mathbf{r}_{U} = peak response from the Sample solution

= peak response from the Standard solution • 5 rs = concentration of USP Cephalexin RS in the Stan- C_S dard stock solution (mg/mL)

= concentration of Cephalexin Hydrochloride from C_U the Sample stock solution (mg/mL)

= designated content of cephalexin in USP Cephalexin RS (µg/mg)

Acceptance criteria: 800–880 μg/mg

IMPURITIES

Organic Impurities

• PROCEDURE 1

Solution A: 1 g of sodium 1-pentanesulfonate in a mixture of 1000 mL of water and 15 mL of triethylamine. Adjust with phosphoric acid to a pH of 2.5 ± 0.1 .

Solution B: 1 g of sodium 1-pentanesulfonate in a mixture of 300 mL of water and 15 mL of triethylamine. Adjust with phosphoric acid to a pH of 2.5 ± 0.1 , and add 350 mL of acetonitrile and 350 mL of methanol.

Mobile phase: See the gradient table below.

Time (min)	Solution A (%)	Solution B (%)
0	100	0
1	100	0
33.3	0	100
34.3	0	100

Diluent: 18 mg/mL of monobasic potassium phosphate in water

Standard solutions: 0.08 mg/mL and 0.16 mg/mL of C₁₆H₁₇N₃O₄S from USP Cephalexin RS in *Diluent*, taking into account the stated potency of the USP Cephalexin RS

In-Process Revision

Sample solution: 6 mg/mL of Cephalexin Hydrochloride in

Diluent

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm \times 25-cm; packing L1 of low acidity

Flow rate: 1 mL/min Injection size: 20 µL

Analysis

Samples: Standard solutions and Sample solution Plot the responses of the cephalexin peaks of the Standard solutions versus their concentrations, calculated on the anhydrous basis, in mg/mL, and draw a straight line through the two points and zero. From the line so obtained and the peak responses of the Sample solution, determine the concentration, I, in mg/mL, of each cephalexin-related substance from the Sample solution other than the cephalexin peak.

Calculate the percentage of each cephalexin-related substance represented by each peak of the Sample solution, other than the cephalexin peak.

Result = $(I/C) \times 100$

- = concentration of each cephalexin-related substance other than cephalexin in the Sample solution (mg/mL)
- C = concentration mg/mL of cephalexin from the Sample solution

Acceptance critéria

Individual impurities: NMT 1.0% of any individual

cephalexin-related substance is found.

Total impurities: NMT 5.0%

• PROCEDURE 2: DIMETHYLANILINE (223): Meets the requirement

SPECIFIC TESTS

- **CRYSTALLINITY** (695): Meets the requirements
- PH (791): 1.5–3.0, in a solution containing 10 mg/mL
- Water Determination, Method I (921): 3.0%–6.5%

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight containers.
- USP REFERENCE STANDARDS (11)

USP Cephalexin RS